Archiv rubriky ‘Technologie’

Fotovoltaické články na dietě

Když jde o fotovoltaické články pro kosmické mise, většinou se jedná o plátky germania. V rámci Programu pro obecnou podporu technologií GSTP (General Support Technology Programme) od agentury ESA se objevil projekt, který si klade smělý cíl – snížit spotřebu tohoto drahého prvku, recyklovat jej a získat tak mnohem tenčí, lehčí a levnější fotovoltaické články pro kosmické mise. První kroky k tomuto cíli již probíhají. V rámci zkoušek se ověřuje postup, v rámci kterého se používá germaniový povrchový podklad. Ten je ošetřen tak, že pod ním vzniká dutina. Jakmile na tomto substrátu vyroste fotovolatický článek, umožní tato 0,001 milimetru silná mezera jednoduché odstranění všeho, co je nad ní.

Vesmírná technika: Systémy podpory života – dýchatelná atmosféra

VT_2020_48

Minulý díl Vesmírné techniky byl takovým základním představením systémů, které v kosmických lodích a na stanicích zajišťují optimální podmínky pro lidskou posádku. Dnes se zaměříme na systém ze všech nejdůležitější. Bez dýchatelné atmosféry by totiž nemohla existovat žádná kosmická mise. Je potřeba zajistit nejen optimální složení vzdušné směsi, ale i její tlak či teplotu.

Vesmírná technika: Úvod do systémů podpory života

VT_2020_47

Poměrně dlouhou dobu se Vesmírná technika nevěnovala pilotované kosmonautice. Dnes by to ráda napravila. Stejně jako všichni ostatní lidé, musí astronauti v kosmických lodích a na kosmických stanicích dýchat vhodnou atmosféru, pít vodu, jíst potraviny, ale také se zbavovat odpadů. Aby byly tyto nezbytné podmínky splněny, se starají systémy zajištění životních podmínek pro posádku, které se někdy také označují jako systémy podpory života.

Systémy pro lunární regolit

Pokud Vás nebaví doma utírat prach, pak vězte, že na Měsíci je situace ještě mnohem horší. Povrch našeho souputníka je extrémně zaprášený a proto se na Zemi mohou technologie zaměřené právě na lunární regolit nejlépe testovat na pouštích. V Mohavské poušti v Kalifornii proběhnou testy hned dvou technologií, které nějak s lunárním regolitem souvisí. V obou případech se ke zkouškám využije zařízení Xodiac od firmy Masten Space Systems, které podobně jako lunární lander umožňuje vertikální start a vertikální přistání. A jaké jsou úkoly těchto testovaných systémů? První má posunout možnosti pokročilých senzorů, které mají řešit rizika spojená s vyvrženým regolitem od raketového motoru a druhý se naopak zaměří na směr regolitu pro analýzu.

Vesmírná technika: Družicový komunikační systém TDRSS

VT_2020_46

Od Měsíce, do kterého jsme narazili v minulém dílu, se vrátíme zpět k Zemi, nikoliv však na její nízkou oběžnou dráhu. V dněšní Vesmírné technice budeme kroužit podstatně výše. Pod zkratkou TDRSS (Tracking and Data Relay Satellite System) se skrývá systém tvořený družcemi TDRS (Tracking and Data Relay Satellite) na geostacionární dráze a pozemními stanicemi. Díky tomuto systému můžeme nepřetržitě obousměrně komunikovat s desítkami družic na nízké oběžné dráze Země.

Ohebná kosmická zrcadla

Zrcadlo, které může svůj povrch deformovat, aby kompenzovalo chyby z výroby nebo uložení, by v kosmických teleskopech mohlo vyřešit také problémy spojené s deformacemi obrazu, které jsou způsobeny tepelnou roztažností. K získávání snímků s velkým rozlišením a vysokou citlivostí jsou nezbytné obří kosmické teleskopy – ať už bude jejich úkolem hledání vzdálených exoplanet nebo přesnější mapování zemského povrchu. Jenže větší a větší přístroje s sebou ponesou stále větší problémy se správným zarovnáním optických prvků. Tyto velké konstrukce budou více ovlivněny prostředím vakua, kde výrazně kolísají teploty. Schopnost aktivně korigovat tvar zrcadel teleskopu v tomto případě nabízí řešení.

Vesmírná technika: Americká sonda LCROSS

VT_2020_45

Od Fobosu z předchozího dílu se přesuneme k souputníku naší Země. V roce 2009 vyrazila k Měsíci americká sonda LRO, která funguje dodnes. Spolu s ní ale letěla ještě jedna sonda, jejíž mise byla doslova sebevražedná. Sonda LCROSS totiž měla narazit do Měsíce, což se jí i podařilo. Ještě předtím ale přinesla cenné informace o přítomnosti ledu v trvale zastíněných kráterech.

Vesmírná technika: Vědecké přínosy programu Fobos

VT_2020_44

Minule jsme se podívali podrobně na mise Fobos 1 a Fobos 2. Dnes povídání o tomto sovětském programu zakončíme. I když je program sond Fobos veřejností považován za fiasko, vědecké výsledky určitě nebyly bezvýznamné. Sonda Fobos 2 měřila magnetické pole Marsu, určila chemické složení povrchu nebo zmapovala teploty na rudé planetě.

Další fáze zkoušek robotického tankování na ISS

Americký projekt RRM3 (Robotic Refueling Mission 3) úspěšně dokončil svou druhou sadu činností s robotickými nástroji. Na Mezinárodní kosmické stanici vyzkoušel klíčové technologie nutné k přečerpávání kryogenních látek, které se dají využít jako chladicí médium, pohonná látka nebo jako součást systémů podpory života. Vyzkoušené technologie půjde využít i v projektech, které mají prodloužit životnost družic, ale podpoří i cesty k Měsíci či Marsu. Mezi 19. a 22. říjnem se RRM3 s pomocí staničního manipulátoru Dextre podařilo propojit více než tři metry dlouhou hadici s kryogenním ventilem, přičemž systém neustále kontroloval správnost spojení.

Vesmírná technika: Průběh misí Fobos 1 a Fobos 2

VT_2020_43

V předchozím díle jsme si ukazovali vědecké přístroje, které měla sonda na palubě. V rámci naší minisérie vám dnes nabízíme předposlední setkání se sovětským programem Fobos. Popíšeme si v něm jak probíhal let obou téměř identických sond. Ačkoliv se z videa může zdát, že sondy nesplnily svůj hlavní úkol, příští díl Vám ukáže, že po vědecké stránce byly velmi úspěšné.