Štítek ‘věda na ISS’

Hledání stabilních kapalin

Mnoho tekutin, se kterými přicházíme běžně do styku, jsou takzvané heterogenní směsi- plavou v nich částice moc malé na to, aby je mohlo spatřit neozbrojené oko. Jejich pohyb se řídí podle gravitace a teploty okolního prostředí. Zajistit, aby se tyto tekutiny od sebe nerozdělily, je výzva, kterou řeší prodejci potravin, ale také zástupci farmaceutického průmyslu. Cíl je jasný – prodloužit životnost léků jak to jen jde. Ale někdy je naopak potřeba z emulze oddělit obě tekutiny – třeba když chceme odstranit znečišťující látky či sebrat živiny – zjednodušeně řečeno, jako když z mléka odebereme vrstvu smetany. Lepší porozumění podstatě míšení a následného oddělení komplexních tekutin je důležité pro různé praktické pozemské aplikace, ale i pro práci s tekutinami v prostředí mikrogravitace.

Modrý blesk viditelný z ISS

Obloha se zatáhne a na rozpálený asfalt začnou dopadat těžké vodní kapky. Okolí ozáří prudký záblesk následovaný hlasitým třasknutím, které se pomalu mění v hluboké dunění – tak si asi každý z nás představí poctivou letní bouřku. Takovou jsme zažili všichni – na vlastní oči, uši i kůži. Ale kolik toho vlastně o tomhle meteorologickém fenoménu vlastně víme? Jak se ukazuje, stále jsou s bouřkami spojené jevy, které potřebují podrobnější vědecký popis – jde třeba o modré výtrysky, elfy a rudé skřítky. Tyto nezvykle pojmenované jevy se ze zemského povrchu pozorují jen velmi obtížně. V nové studii publikované v časopise Nature však vědci hledají odpovědi na otázky, které jsou s těmito jevy spojené. A co je pro nás nejdůležitější – ke svému bádání využili data z evropského přístroje ASIM (Atmosphere-Space Interactions Monitor), který se nachází na ISS.

Nevysávejte tento experiment!

Příkaz „nedotýkat se“ jste mohli vidět třeba v galerii u obrazu, který namaloval Matisse, nápis „nevysávat“ na experimentu Matiss na palubě ISS. Jeho úkolem bylo testovat antibakteriální vlastnosti hydrofobních (vodu odpuzujících) povrchů. Držáky vylepšeného systému Matiss-2,5 sloužily na stanici více než rok a nyní jsou již zpátky na Zemi, kde proběhne jejich analýza. Bakterie mohou být v kosmickém prostoru nepříjemným problémem. V neustále recyklované atmosféře stanice se totiž rády množí. Astronauti obývající ISS proto svůj kosmický domov pravidelně uklízí, aby bojovali proti bakteriím a plísním. Pro úklid jsou vyhrazeny soboty – celá posádka otírá povrchy, vysává a vyhazuje odpadky.

První Dragon 2 se vrací na Zemi

Už jen skutečnost uvedená v nadpisu by sama osobě stačila k tomu, aby se daná událost mohla považovat za zajímavou. Je s ní však spojen ještě jeden aspekt, který její zajímavost ještě zvyšuje. Vědecké experimenty z ISS totiž zažijí velmi zajímavou cestu, při které vystřídají kosmickou loď, vrtulník, klasické vodní plavidlo, letadlo a také automobil. 11. ledna okolo 15:25 SEČ se kosmická loď Dragon 2 z mise CRS-21 odpojí od Mezinárodní kosmické stanice, aby o 12 hodin později návratová kabina dosedla do vln Atlantiku. Dragon druhé generace umožňuje oproti generaci první dopravit na Zemi mnohem více vědeckých experimentů a právě mise CRS-21 je prvním případem, kdy se toho dočkáme.

Co prozradí kosmické bubliny?

Na náhledovém obrázku dnešního článku vidíte něco, co byste na první pohled asi jen stěží dokázali určit. Díváte se na bublinu, která vznikla v rámci nástupce experimentu Multiscale Boiling, který je znám také jako Rubi. A proč má bublina na fotce tak nezvyklý tvar? O její protažení se postaraly elektrostatické síly. Ty se nevyužívají jen k tomu, aby vznikaly podobné působivé fotky, ale také pro lepší vědecké porozumění procesu varu. Var zná lidstvo už tisíce let, ale stále nemáme tento proces plně pochopený – zvlášť v podmínkách mikrogravitace. Pochopení toho, jak se chová proces varu ve stavu mikrogravitace, je pro vědce důležité, protože gravitace hraje důležitou roli. Bez jejího účinku vypadá var jakoby zpomaleně a vznikají při něm také větší bubliny. Díky tomu mohou vědci pozorovat a měřit efekty a projevy, které jsou při varu na Zemi buďto příliš rychlé nebo příliš malé.

Další fáze zkoušek robotického tankování na ISS

Americký projekt RRM3 (Robotic Refueling Mission 3) úspěšně dokončil svou druhou sadu činností s robotickými nástroji. Na Mezinárodní kosmické stanici vyzkoušel klíčové technologie nutné k přečerpávání kryogenních látek, které se dají využít jako chladicí médium, pohonná látka nebo jako součást systémů podpory života. Vyzkoušené technologie půjde využít i v projektech, které mají prodloužit životnost družic, ale podpoří i cesty k Měsíci či Marsu. Mezi 19. a 22. říjnem se RRM3 s pomocí staničního manipulátoru Dextre podařilo propojit více než tři metry dlouhou hadici s kryogenním ventilem, přičemž systém neustále kontroloval správnost spojení.

Vesmírná technika: Vědecké vybavení Veggie

Veggie

V dnešním díle Vesmírné techniky zamíříme na ISS a podíváme se na jeden velmi zajímavý a mezi jejími obyvateli poměrně oblíbený experiment Veggie. Jedná se o malý foliovník pro experimentální pěstování rostlin (nejen) pro přímou spotřebu posádkou v podmínkách kosmického letu. Astronauti na něm nejen dělají vědu, ale také jim občas zpestřuje jídelníček.

Nanočástice pro zdravé tkáně

Známé tvrzení „jezte vitamíny“ by se možná mohlo časem změnit na „dejte si keramické nanočástice“. Výsledky kosmického výzkumu totiž posilují myšlenku, že miniaturní částice mohou buňkám pomoci bránit se před běžnými zdroji poškození. Oxidační stres probíhá v našem těle ve chvíli, kdy buňky ztratí přirozenou rovnováhu elektronů v molekulách, které je tvoří. To se děje běžně a stále – jde o součást metabolismu, ale svou roli hraje i v procesech stárnutí či některých patologických projevech jako je selhání srdce, svalová atrofie nebo Parkinsonova choroba. Výzkum prováděný na Mezinárodní kosmické stanici nyní může lékařům pomoci hledat cesty, jak s tímto nepřítelem bojovat. Nová metoda by pak našla uplatnění nejen u astronautů, ale i u lidí na Zemi.

Výzkum malých částic s velkými přínosy

Zubní pasty, 3D tisk, léky a detekce sesuvů materiálu na Marsu spolu na první pohled nemají nic společného. Přesto můžeme najít jednu věc, která tyto věci a jevy spojuje. Všechny totiž společně mohou využít pokroků ve výzkumu takzvaných koloidů, které se studují na Mezinárodní kosmické stanici. Jde o směsi tvořené droboučkými částicemi, které jsou rozptýlené v tekutině a mohou mít různé formy. Patří sem i různé přirozené směsi jako je mléko nebo bahnitá voda, ale i široké spektrum lidmi vyráběných produktů – od šamponů přes léky až po salátové dresinky. V některých koloidních roztocích se nachází vzácné částice, které jsou schopné vytvářet krystaly – ty by se daly využít k výrobě nejrůznějších materiálů.

Thomas Pesquet a experiment Grasp

Francouzský astronaut se na přiložené fotografii seznamuje s experimentem Grasp. Tohle je jen nácvik, který probíhá ve středisku přípravy evropských astronautů v německém Kolíně nad Rýnem, ale až se Thomas vrátí na ISS, bude tento experiment provádět znovu a tentokrát už v podmínkách mikrogravitace. Ale je potřeba říct, že tohle zařízení pro něj není nové – experiment Grasp alias Gravitational References for Sensimotor Performance totiž používal i při své první kosmické misi pojmenované Proxima v roce 2017. V rámci tohoto experimentu se ověřuje, jak lidský mozek interpretuje vizuální podněty v prostředí mikrogravitace. Astronauti při něm používají brýle pro virtuální realitu a jejich úkolem je provádět na první pohled jednoduché úkoly – například chytají míč nebo nalévají vodu do sklenice (vše samozřejmě jen virtuálně). Při experimentu je astronaut připojen postrojem ke stěně, aby nedopatřením nenarazil do staničního vybavení.