Archiv rubriky ‘Technologie’

Jak na zaprášení a odrážení slunečního záření

Náhledový snímek článku vznikl 31. března 2021. Vidíme na něm, jak v útrobách Neil Armstrong Operations and Checkout Building na floridském Kennedyho středisku výzkumnice Sarah Snyder aplikuje selektivní povrchovou vrstvu na elektrodynamický prachový štít EDS (Electrodynamic Dust Shield). Tohle je jedna z řady souběžně probíhajících zkoušek, které mají připravit kousky tohoto prachového štítu na testy v kosmickém prostoru. Technologie pro omezení účinků prachu by se jednou daly využít na Měsíci u systémů jako jsou kamery, fotovoltaické panely, skafandry, nebo nářadí dopravených na povrch v rámci programu Artemis. Zkrátka a dobře u všech systémů, kterým všudypřítomný prach škodí.

Vesmírná technika: Sovětský program Vostok – předešlé programy

V současnosti létají lidé na oběžnou dráhu okolo Země několikrát ročně, ale ještě před sto lety to byla vyložená sci-fi. Historický moment, který nastal 12. dubna 1961, otevřel cestu lidem na oběžnou dráhu. Než však Jurij Alexejevič Gagarin vyrazil na misi pojmenovanou Vostok (původně opravdu bez pořadového čísla), muselo se stát hned několik věcí. Před programem Vostok tu bylo hned několik více či méně reálných projektů, které se zaměřovaly na do té doby nemyslitelné pilotované kosmické lety.

Vesmírná technika: Mars Pathfinder – vědecké vybavení roveru Sojourner

VT_2021_13

Posledně jsme se zaměřili obecně na vozítko Sojourner, zejména na jeho konstrukci. Na konec naší minisérie věnované americké misi Mars Pathfinder jsme si nechali vědecké vybavení tohoto roveru. Na jeho palubě byl sice formálně jediný vědecký přístroj, ale ve skutečnosti bychom zde našli několik různých zajímavých experimentů, které posunuly naše znalosti o Marsu.

První test iontového pohonu stanice Gateway

Systém, který bude zajišťovat pohon stanice Gateway kolem Měsíce zažil nedávno svou první aktivaci – šlo o začátek mnoha pozemních zkoušek, které mají zajistit, že modul PPE (Power and Propulsion Element) je připraven k letu. NASA společně s firmami Maxar Technologies a Busek Co. úspěšně otestovala šestikilowattový pohonný subsystém SEP (solar electric propulsion), který je určen pro modul PPE. Statické zážehy jsou financovány Direkotoriátem vědeckých technologických misí, který pomáhá zlepšit vývoj komerčních kosmických možností. Při těchto testech se ověří opakované aktivace a vypnutí pohonu včetně dalších scénářů, které mohou v reálném provozu nastat. Během testů se má ze všech úhlů pohledu prověřit, že systém je připraven na let k Měsíci a dlouhodobou službu v tomto prostředí.

NASA stojí o vertikální fotovoltaické panely

Agentura NASA navázala spolupráci s americkými firmami, které mají vyladit technologii výsuvných vertikálních fotovoltaických panelů, které by se daly využít na povrchu Měsíce. Právě návrat na Měsíc bude cílem amerického programu Artemis, v jehož rámci by v okolí jižního pólu měly vzniknout základy pro udržitelnou lidskou přítomnost. Spolehlivý a udržitelný zdroj elektrické energie by mohl zásobovat lunární habitaty, rovery, ale třeba i stavební systémy pro budoucí robotické i pilotované mise. NASA proto nyní vybrala pět firem, které dostaly úkol navrhnout technologii fotovoltaických panelů, které by se dokázaly samostatně rozvinout a dosáhnout výšky až 9,75 metru. To ale není vše – panely mají umožňovat také jejich opětovné složení, aby mohly být přemístěny do jiné oblasti.

Vesmírná technika: Mars Pathfinder – rover Sojourner

VT_2021_12

Další díl se zaměří na součást mise, která byla z hlediska dalšího vývoje sond pro Rudou planetu hodně důležitá. První vozítko pracující na povrchu Marsu bylo na dnešní standardy opravdu malé, ale přesto znamenalo velký pokrok. Sojourner umožnil průzkum nejen v těsném místa přistání, ale i v jeho blízkém okolí. Dnes se podíváme na konstrukci tohoto šestikolového průzkumníka.

Vesmírná technika: Mars Pathfinder – konstrukce a vědecké vybavení povrchové platformy

VT_2021_11

Americká sonda Mars Pathfinder přistála na Marsu 4. července 1997 a již za několik desítek minut došlo k rozložení její povrchové platformy. Ta obsahovala systémy nutné k fungování, ale i sadu vědeckých přístrojů – především pak stereokameru IMP. Ta i přes rozlišení, které je dnes úsměvné, dokázala přinést mnoho důležitých informací o místě přistání.

3D tištěná vzletová a přistávací rampa

Tým studentů z vysokých škol a univerzit po celých Spojených státech  zapojených do programu Artemis generation pod dohledem expertů z NASA otestoval 3D vytištěnou rampu pro vzlety a přistání. Cílem bylo ověřit, jak si tato konstrukce povede při vystavení horkým spalinám raketového motoru. Test, který proběhl 6. března na texaské základně Camp Swift u města Bastrop, byl součástí programu Lunar PAD (Lunar Plume Alleviation Device), který má za cíl vyřešit problémy spojené s vyvržením lunárního regolitu během startů a přistání na měsíčním povrchu.

Vesmírná technika: Sonda Mars Pathfinder – konstrukce přeletové části a přistání

VT_2021_10

4. července roku 1997 přistála na Marsu v tamním údolí Ares Vallis americká sonda Mars Pathfinder. V té době už za sebou měla několikaměsíční cestu meziplanetárním prostorem – startovala totiž 4. prosince roku 1996. Dnes se zaměříme na popis přeletové části této sondy, ale i na průběh přistání. Šlo totiž o premiéru tohoto způsobu, který se pak využil i u dalších misí.

Vesmírná lana: historie, technologie, budoucnost?

Doprava ve vesmíru se zásadně liší od ostatních druhů dopravy. Na Zemi se dopravní prostředky opírají o vnější prostředí, ať jde o zemi, vodu, nebo vzduch. Ve vesmíru ale vnější prostředí není, takže si dopravní prostředek musí „prostředí“ přivézt s sebou v podobě paliva. Jakmile se ale jednou motor o palivo „opře“, urychlí ho v opačném směru a navždy už o něj přijde. S daným množstvím paliva tedy dosáhne jen daného výsledku, a to z důvodů, které nejde vyřešit jen přidáním energie. Proto z principu nelze vytvořit raketu poháněnou jen elektřinou.