Štítek ‘fyzika’

XMM-Newton – hvězdotřesení u magnetaru

XMM-Newton

Náš vesmír je nejen podivnější, než jsme si mysleli, ale dokonce ještě výrazně zvláštnější, než jsme se kdy vůbec odvážili představit. Nalezneme v něm celou řadu velmi bizarních objektů, jako jsou kvasary, rádiové galaxie nebo černé díry. V mnoha ohledech nejvíce podivuhodná tělesa, která navíc můžeme najít i poměrně blízko od nás, jsou neutronové hvězdy. O nich jsme se už blíže bavili v jednom z minulých článků. Dnes se však zaměříme na jeden konkrétní nedávný objev.

GRBAlpha – nejjasnější gama záblesk

Elektromagnetické záření dělíme podle energie na několik druhů. Viditelné světlo známe od nepaměti, avšak mnohé další typy tohoto záření byly objeveny až v 19. nebo 20. století. Například nejenergetičtější záření gama objevil Paul Villard v roce 1900. Postupem času si všechny druhy elektromagnetického záření našly cestu i do kosmického výzkumu. Pro gama paprsky je to dokonce jediná cesta, neboť jeho vlnové délky atmosféra k povrchu Země téměř vůbec nepropouští. Postupem času se v kosmickém prostoru vystřídala řada důležitých družic specializovaných na gama astronomii. Za všechny jmenujme alespoň observatoře Compton a stále aktivní Fermi.

Černé díry a kosmický výzkum

Naše vlastní černá díra Sagittarius A* na snímku ze soustavy radioteleskopů Event Horozon Telescope.

Černé díry jsou astronomické objekty, které svou tajemností fascinují celou řadu lidí. Mnohé vědce dokonce natolik, že jim zasvětili většinu svého profesního života. Současně jde o skvělé taháky při popularizaci vědy, není proto divu, že o černých dírách již vzniklo množství popularizačních knih i dokumentů. A tyto objekty se dokonce objevují i v mnohých sci-fi filmech. Jejich všeobecná popularita ale zároveň vede k tomu, že se na ně nabaluje množství polopravd, mýtů i vyložených nesmyslů. Pojďme se proto dnes na tyto zajímavé objekty podrobněji podívat z pohledu vědy.

Antihmota a kosmický výzkum

Částice antihmoty interagující s částicemi hmoty v okolí neutronové hvězdy.

Antihmota přitahuje pozornost nejen příznivců světa science-fiction. Jde o něco záhadného a jak dobře vědí nejen psychologové, lidé mají tajemno velmi rádi. Zde jde navíc ještě o kombinaci s také poněkud neznámou fyzikou. Antihmota proto vzbuzuje velká očekávání, ať už jde o možnost rychlého mezihvězdného cestování či neomezeného zdroje energie. Zda se ale tyto vize někdy uskuteční je velká otázka. Faktem je, že už dnes má antihmota praktické využití a to nejen ve výzkumu, ale i v lékařství. Pojďme se dnes podívat na to, co o antihmotě zatím víme.

S Webbem za hlubokým nebem – 3. díl

Takto bude vypadat Dalekohled Jamese Webba na oběžné dráze

Po dvou měsících se zde společně znovu setkáváme již u třetího dílu našeho seriálu. Webbův dalekohled a jeho výsledky jsme opustili na konci listopadu. Od té doby stihl Webb oslavit první narozeniny v kosmickém prostoru, byť zatím nikoliv první výročí vědecké práce, ani výročí prvních zveřejněných snímků. Na tyto milníky si musíme ještě několik měsíců počkat. Zato nám však přibylo mnoho zajímavých a důležitých dat, fotografií a měření, která opět v plné šíři ukazují možnosti nového velkého kosmického teleskopu. Právě na ně se dnes podíváme. A začneme u extrémně vzdálených objektů mladého vesmíru. 

Pulsary a kosmický výzkum

Jen málokdo dnes nezná neutronové hvězdy. Ještě před sto lety ovšem vědci ani netušili, že existují samotné neutrony, natožpak hvězdy z nich složené. První takové objekty našli astronomové až v 60. letech minulého století a rozpoutali tím hotovou tsunami. Od té doby probíhá nesmírně intenzivní výzkum neutronových hvězd a jejich jednotlivých typů. O těchto objektech jsme získali spoustu znalostí a zjistili jsme, že jsou ještě mnohem podivnější, než jsme se vůbec odvážili doufat. Dnes si některé z již dlouho známých informací, ale i nových objevů o neutronových hvězdách představíme více dopodrobna. Začít ale musíme u toho, jak fyzikové objevili částice zvané neutrony.

Vysvětlili jsme konečně původ Fermiho bublin?

Ve fyzice a ve vědě obecně už to tak bývá, že když zodpovíme nějakou otázku, spousta jiných se vynoří. Přesto je pochopitelně nesmírně pozitivní, že se nám občas podaří nějaký dlouho nevyřešený problém objasnit. Něco podobného se děje možná právě teď. Japonský fyzik Jutaka Fujita publikoval odbornou práci v níž vysvětluje záhadu takzvaných Fermiho bublin. Zatím je samozřejmě příliš brzy na komplexní zhodnocení správnosti jeho myšlenky, přesto neuškodí si ji stručně představit.

Einstein znovu triumfuje aneb nejpřesnější test principu ekvivalence

Obecná relativita, moderní teorie gravitace, je tady s námi již 107 let. V Evropě tehdy zrovna zuřila Velká válka a proto nemohlo být o ověřování nového přístupu ke gravitaci ani řeč. Avšak už roku 1919 provedli britští astronomové v Brazílii a na Princově ostrově první slavný test obecné relativity, který posléze mnoho vědců více či méně úspěšně opakovalo. Později experti navrhli i mnoho dalších testů, jež se od 60. let minulého století prováděly ve velkém. Obecná relativita procházela náročnými zkouškami, vždy ale slavně triumfovala. Některé z testů byly prováděny také v kosmickém prostoru vesmírnými observatořemi. Dnes se právě na jeden takový nedávný pokus podíváme podrobněji.

Kapalné helium, Lambda Point Experiment a STS-52

Supratekuté helium

Fascinující svět velmi nízkých teplot jsme si na našem webu představili již ve dvou článcích. Žádný ale nebyl primárně zaměřen na nesmírně zajímavý izotop helia, kterým je helium-4. To je sice hodno pozornosti i za normálních podmínek, avšak teprve při nízkých teplotách kolem 2,5 K se projeví ty nejvíce udivující vlastnosti, které z helia-4 činí jeden z nejpodivuhodnějších stavů hmoty na světě. S heliem-4 se navíc pojí jeden nevyřešený fyzikální problém, který zkoumala i posádka jednoho z letů amerických raketoplánů. Nejprve si však o heliu a jeho vlastnostech řekněme nějaké základní údaje.

Top 5 fyzikálních observatoří minulosti

Sonda Cosmic Background Explorer.

Hvězdná obloha nás fascinuje snad už od doby, kdy jsme se stali lidmi a možná i déle. Není tedy divu, že astronomie a fyzika patří k nejstarším vědám. Už ve starověku dokázali tehdejší učenci objevit některé velmi důležité skutečnosti a zákony, přesto přišel velký boom až v posledních 400 letech, zejména pak v posledním století s nástupem stále dokonalejší techniky. Přesto jsme byli se svými experimenty dlouho omezeni na povrch Země a jeho bezprostřední okolí. Teprve od 50. let jsme s rozvojem kosmonautiky začali vysílat první astronomické přístroje mimo zemskou atmosféru a začali objevovat dříve netušený svět. V následujících třech dílech našeho letního seriálu TOP 5 se proto zaměříme na nejdůležitější kosmické teleskopy a sondy z pohledu fyziky. V prvním příspěvku si představíme nejdůležitější observatoře a dalekohledy, které již ukončily svou činnost.