Štítek ‘astrofyzika’

Top 5 zrušených fyzikálních observatoří

Minule jsme si představili nejzajímavější observatoře, které teprve čekají na svou šanci a vědci je intenzivně připravují ke startu a následný sběr dat. Dnes se naopak podíváme na mise, jež nikdy neměly to štěstí do kosmického prostoru zamířit. Všechny sice byly schváleny a technici je chystali na start, nakonec však každá z nich zůstala na naší planetě. Důvody přitom byly různé, od rozpočtových škrtů až po technické obtíže. Společné mají nenaplněná očekávání a zklamání mnoha předních astrofyziků a kosmologů.

Top 5 fyzikálních observatoří minulosti

Sonda Cosmic Background Explorer.

Hvězdná obloha nás fascinuje snad už od doby, kdy jsme se stali lidmi a možná i déle. Není tedy divu, že astronomie a fyzika patří k nejstarším vědám. Už ve starověku dokázali tehdejší učenci objevit některé velmi důležité skutečnosti a zákony, přesto přišel velký boom až v posledních 400 letech, zejména pak v posledním století s nástupem stále dokonalejší techniky. Přesto jsme byli se svými experimenty dlouho omezeni na povrch Země a jeho bezprostřední okolí. Teprve od 50. let jsme s rozvojem kosmonautiky začali vysílat první astronomické přístroje mimo zemskou atmosféru a začali objevovat dříve netušený svět. V následujících třech dílech našeho letního seriálu TOP 5 se proto zaměříme na nejdůležitější kosmické teleskopy a sondy z pohledu fyziky. V prvním příspěvku si představíme nejdůležitější observatoře a dalekohledy, které již ukončily svou činnost.

Široké spektrum vědy v nových snímcích JWST

Výřez ze snímku mlhoviny Carina pořízený JWST. Zdroj: esawebb.org

Dnes v odpoledních hodinách zveřejnila americká NASA několik dalších snímků a spekter napozorovaných Vesmírným dalekohledem Jamese Webba. Týkají se nejrůznějších odvětví astronomie, od výzkumu exoplanet, přes mlhoviny, až po kosmologii a výzkum objektů ve velmi vzdáleném vesmíru. Proto si společně prozradíme základní informace k těmto snímkům, ukážeme si čím jsou zajímavé a důležité, ale naznačíme si také na co se můžeme těšit v budoucnu. Nejprve se podívejme na dvě zkoumané mlhoviny.

Gaia – nová data, nové objevy, nové naděje

Gaia

Astrometrie, tedy obor zkoumající pozice a pohyby hvězd i dalších nebeských těles je jedním z nejstarších a nejdůležitějších odvětví astronomie. Není proto divu, že tato oblast brzy zaujala i vědce podílející se na kosmickém výzkumu. První idea astrometrické družice pochází již z roku 1967, na start mise Hipparcos jsme si však museli počkat až do roku 1989. Po skončení činnosti této velmi úspěšné observatoře přesunula značná část vědců podílejících se na této misi svůj zájem k novému projektu, sondě, která později získala jméno Gaia.

Historie kosmologie, reliktní záření a kosmický výzkum

Vznikem a vývojem vesmíru se zabývá celá řada teorií a hypotéz. Některé jsou pavědecké a pseudovědecké, jiné náboženské a mytologické. Přestože lze bezesporu mezi oběma skupinami najít zajímavé myšlenky, dnes se budeme zabývat pouze teoriemi vědeckými. Respektive pouze jednou z nich, teorií velké třesku, nejúspěšnější kosmologickou teorií všech dob. Její nejnovější verzi možná znáte jako standardní kosmologický model nebo též model ΛCDM. Cesta k věrohodné teorii vzniku a vývoje našeho vesmíru byla ale velmi dlouhá a náročná. Od doby antických filosofů a prvních moderních vědců, přes posměch kosmologům ze strany astronomů a fyziků z jiných oborů až po velké úspěchy v posledních dekádách. Vydejte se na podivuhodnou pouť za poznáním naší vlastní historie.

Gravitační vlny a kosmický výzkum

V únoru 2016 přišla z USA senzační novina, která brzy zaplnila vědecké weby a další sdělovací prostředky. Observatoř LIGO v září 2015 pozorovala gravitační vlny. Přesně po sto letech od předpovědi Alberta Einsteina tak byly gravitační vlny přímo pozorovány, přestože nešlo o první důkaz jejich existence. Americkým pozorováním se uzavřela jedna dlouhá kapitola fyzikálního výzkumu, a co víc, otevřelo se nám nové okno do vesmíru, které umožní prozkoumání mnoha zajímavých jevů. O tom všem si povíme. Nejprve si ale řekněme něco o základních fyzikálních silách a historii výzkumu gravitace.

Kosmické záření a kosmický výzkum

Kosmické záření, fenomén dráždící fyziky už svým nepřesným názvem, nepřestává překvapovat ani po více než sto letech od svého objevu. Může totiž dosahovat energií milionkrát vyšších než nejlepší urychlovače částic, které má lidstvo k dispozici. Zdroje těchto obřích energií jsou navíc dosud neznámé. K rozřešení záhady bylo vybudováno několik špičkových fyzikálních zařízení, například observatoř Pierra Augera v Argentině, na výzkumu se však významně podílí i řada kosmických observatoří a v poslední době se uvažuje o vypuštění dalších speciálních detektorů kosmického záření například na palubu Mezinárodní kosmické stanice.

Testy obecné relativity a kosmický výzkum

Už více než celé jedno století je platnou teorií gravitace obecná teorie relativity publikovaná Albertem Einsteinem v roce 1915. Od té doby obstála v mnoha experimentech, které si kladly za cíl její prověření, od prvních pokusů při zatměních Slunce v 10. letech minulého století až po moderní kosmologické a astrofyzikální experimenty vyžadující pokročilé technologie, z nichž mnohé úzce souvisejí s kosmickým výzkumem. Povíme si ale i něco o slavném experimentu považovaném za nejlevnější pokus moderní fyziky a o třech základních způsobech prověření Einsteinovy teorie. Nejprve si však musíme udělat stručnou exkurzi do samotné obecné relativity a říci si něco více o jejím původu a významu a o tom, co nám vlastně říká i co nám naopak neříká.

Nevyřešené problémy ve fyzice a kosmický výzkum

Fyzika je fascinující vědou, která nám za staletí své existence odhalila již mnoho záhad o světě kolem nás, od tajemství vesmíru až po složení hmoty. Snad ještě více otázek však zůstává nezodpovězeno, ačkoliv na nich mnohdy pracují největší mozky vědeckého světa. To by vás ale nemělo překvapit, často se říká, že jeden vyřešený problém ve vědě odhalí dalších deset problémů o nichž nevíme nic. Dnes se na některé z těchto velkých záhad společně podíváme, nejméně dvě totiž úzce souvisí i s kosmonautikou. Představíme si nicméně i další mimořádně zajímavé problémy, každý z nich v případě vyřešení znamenající Nobelovu cenu za fyziku a věčnou slávu.

Neutrina a kosmický výzkum

Neutrina mají zcela oprávněně pověst záhadných, těžko polapitelných a trochu zlobivých částic. Už jejich předpověď byla velmi zvláštní, nemluvě už vůbec o spoustě fascinujících vlastností, z nichž mnohé i dnes spíše tušíme, než přesně známe. Lze proto důvodně očekávat, že neutrina přispějí do studnice znalostí moderní fyziky ještě mnoha střípky. Vydejme se dnes spolu na podivuhodnou výpravu za poznáním jedné části minulosti, ale i současné fyziky, jakož i špičkových vědeckých pracovišť.