křišťálová lupa

sociální sítě

Přímé přenosy

Falcon 9 (OneWeb F20)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

Ramses

Představitelé ESA a OHB Italia smlouvu v hodnotě 63 milionů eur pro přípravné práce na misi Ramses, Rapid Apophis Mission for Space Safety, která se vydá k asteroidu Apophis před jeho těsným průletem kolem Země v dubnu 2029.

Memorandum kosmodromů

Osm kosmodromů z šesti zemí podepsalo memorandum o porozumění 13. října během akce konané na Mezinárodním astronautickém kongresu (IAC). Smlouva nastiňuje plány pro spolupráci kosmodromů při řešení problémů s rozvojem a provozem jejich zařízení.

Kepler Communications

Evropská kosmická agentura udělila skupině vedené Kepler Communications, menší kanadský družicový operátor, kontrakt v hodnotě 36 milionů eur na vývoj optické přenosové sítě na nízké oběžné dráze Země (LEO).

Další mise Crew Dragonu

NASA uvedla, že použije Crew Dragon pro misi Crew-10 k ISS, která je plánována na únor 2025, tak pro misi Crew-11 naplánovanou na červenec. Důvodem je vyhodnocení zda bude nutné provést další zkušební let kosmické lodi Starliner.

Axiom Extravehicular Mobility Unit

Na Mezinárodním astronautickém kongresu dne 16. října společnosti Axiom Space a Prada odhalily podrobnosti o obleku Axiom Extravehicular Mobility Unit (AxEMU), který Axiom vyvíjí pro lunární mise v rámci programu Artemis.

Gaofen-12

Raketa Dlouhý pochod 4c vynesla z kosmodromu Jiuquan družici Gaofen-12. Družice je součástí civilního čínského systému pro pozorování Země s vysokým rozlišením.

Airbus defense and space division

Divize obrany a vesmíru společnosti Airbus oznámila plány na snížení až o 2 500 pozic do poloviny roku 2026. Tento krok následuje po téměř dvou letech těžkých ztrát, což Airbus přimělo přizpůsobit se vyvíjejícím se tržním podmínkám.

Qianfan

Čína v úterý úspěšně vypustila druhou skupinu 18 družic Qianfan pro plánovanou megakonstelaci Thousand Sails, která má mít 14 000 družic. Družice vynesla raketa Dlouhý pochod 6A odstartovala z Taiyuan Satellite Launch Center.

Venturi Astrolab

Venturi Astrolab, společnost vyvíjející velká lunární vozítka, oznámila plány na vybudování FLEX Lunar Innovation Platform, neboli FLIP, roveru, který bude uveden na trh již na konci roku 2025.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

XMM-Newton – hvězdotřesení u magnetaru

XMM-Newton

Náš vesmír je nejen podivnější, než jsme si mysleli, ale dokonce ještě výrazně zvláštnější, než jsme se kdy vůbec odvážili představit. Nalezneme v něm celou řadu velmi bizarních objektů, jako jsou kvasary, rádiové galaxie nebo černé díry. V mnoha ohledech nejvíce podivuhodná tělesa, která navíc můžeme najít i poměrně blízko od nás, jsou neutronové hvězdy. O nich jsme se už blíže bavili v jednom z minulých článků. Dnes se však zaměříme na jeden konkrétní nedávný objev.

Magnetary

Umělecká představa magnetaru CXOU J164710.2−455216.
Umělecká představa magnetaru CXOU J164710.2−455216.
Zdroj: https://upload.wikimedia.org/

Neutronové hvězdy fascinují astronomy už od svého objevu v 60. letech minulého století. Od té doby jsme zjistili, že existuje několik typů neutronových hvězd, z nich se nejčastěji hovoří o pulsarech, rychle se otáčejících tělesech, která vysílají nesmírně pravidelné pulsy elektromagnetického záření. Ovšem snad nejvíce fascinujícím typem neutronových hvězd jsou magnetary, o nichž jsme už také více hovořili v dřívějším samostatném článku.

Nyní si proto jen stručně zopakujme, že magnetary sdílejí s ostatními neutronovými hvězdami mnoho společných vlastností, jako je extrémně vysoká hustota, teplota a podobně, ale liší se tím, že mají mnohonásobně vyšší intenzitu magnetického pole. To dosahuje i u běžných neutronových hvězd dosti vysokých hodnot, ale u magnetarů je ještě stokrát až tisíckrát silnější. Zatímco na Zemi dokážeme vytvořit magnety s indukcí maximálně v řádu desítek Tesla, magnetary disponují magnetickým polem o indukci až 1011 Tesla, tedy miliardkrát silnějším.

Přehled typů neutronových hvězd
Přehled typů neutronových hvězd
Zdroj: https://d2pn8kiwq2w21t.cloudfront.net/

Magnetarů prozatím známe pouze zhruba kolem tří desítek. Některé z nich se navíc projevují i jako pulsary, takových jsme našli asi deset. Není příliš divu, že nevíme o více podobných objektech. Extrémní magnetické pole totiž poměrně rychle brzdí rotaci neutronové hvězdy. Ta se pak navenek přestane projevovat a je tudíž dosti těžké takovou hvězdu s pomalou rotací najít. Musíme mít proto štěstí a natrefit na magnetar v rané fázi existence.

Soft Gamma Repeaters

Umělecké ztvárnění magnetaru s magnetickými siločarami.
Umělecké ztvárnění magnetaru s magnetickými siločarami.
Zdroj: https://upload.wikimedia.org/

S tím souvisí jedna další zajímavá věc. Magnetické pole u magnetarů nebývá tak hezky uspořádané jako to známe od umělých magnetů z laboratoře nebo i od zemského magnetického pole. Naopak, magnetary mají běžně magnetické pole nesmírně chaotické. Takové pole se pak snaží přeuspořádat a dosáhnout stabilnějšího stavu. Kvůli tomu dochází u tohoto typu neutronových hvězd k nesmírně bouřlivým procesům.

Jak se totiž magnetické pole mění, ovlivňuje velmi silně hvězdu samotnou. Na ní pak dochází k různým hvězdotřesením, která mají nesmírnou intenzitu, jež by odpovídala desítkám stupňů Richterovy škály. Ta mohou vést k popraskání pevného povrchu magnetaru. Při tom se do okolního prostoru uvolňuje spousta materiálu z hvězdy, ale zejména intenzivní elektromagnetické vlny ve formě měkkého gama záření.

Ty můžeme zachytit i na vzdálenost desítek tisíc světelných let. Což se dokonce již několikrát i podařilo. Většina magnetarů uvolňuje záření opakovaně, avšak nepravidelně. Může se stát, že přijde několik záblesků těsně po sobě a poté třeba deset let nic. Protože se však přece jen události u jednoho zdroje obvykle opakují, hovoříme o tzv. Soft Gamma Repeaters (SGR), neboli opakovačích měkkého gama záření.

SGR 1935+2154

Okolí magnetaru SGR 1935+2154 nasnímané rádiovou observatoří MeerKAT.
Okolí magnetaru SGR 1935+2154 nasnímané rádiovou observatoří MeerKAT.
Zdroj: https://scx2.b-cdn.net/

V roce 2020 pozorovali astronomové právě jeden z těchto SGR zdrojů. Konkrétně šlo o SGR 1935+2154 vzdálený 30 000 světelných let ve směru souhvězdí Lištičky. Roku 2014 jej objevila vesmírná observatoř Swift. Od té doby se tento objekt dlouhodobě zkoumá. Koncem roku 2020 u něj odborníci pozorovali náhlé prudké zpomalení rotace. Několik dní po této změně navíc hvězda začala zářit v rádiových vlnách. Tyto dvě události spolu mají pravděpodobně úzkou souvislost. Prudké zpomalení rotace magnetaru sice fyzikové viděli již potřetí, v tomto případě se však poprvé povedlo pozorovat hvězdu po delší dobu.

Popis přístroje NICER
Popis přístroje NICER
Zdroj: http://spaceflight101.com

Odborníci tak mohli celý proces důkladně analyzovat, pokusit se stanovit příčinu zpomalení a srovnat data se známými teoretickými modely. K výzkumu tohoto objektu použili astronomové evropskou rentgenovou observatoř XMM-Newton a detektor NICER umístěný na Mezinárodní vesmírné stanici. Údaje z těchto přístrojů ukázaly, že možným vysvětlením pozorovaného jevu je to, že se v pevné kůře na povrchu neutronové hvězdy vytvořila trhlina, v základním přiblížení podobná vulkanickým trhlinám na zemi, z nichž se vylévá láva.

Specialisté již dříve tušili, že by se podobné trhliny mohly na magnetarech nacházet, avšak přímý důkaz dosud chyběl. V tomto případě se zdá, že se trhlina utvořila v oblasti blízko magnetického pólu hvězdy. Z trhliny vyvrhl explodující magnetar do okolního prostoru hmotu. Tato událost mohla podle zjištění vědců ovlivnit magnetické pole objektu, což následně vedlo i k uvolnění emisí rádiového záření zaznamenaných čínským obřím radioteleskopem Five-hundred-meter Aperture Spherical (FAST).

Změny v době rotace magnetarů

Umělecká představa pevné krusty na povrchu magnetaru a silného hvězdotřesení.
Umělecká představa pevné krusty na povrchu magnetaru a silného hvězdotřesení.
Zdroj: https://cdn.sci.news/

Nový objev úzce souvisí se zajímavým fenoménem a to je rotace magnetarů. Jak víme z minulého článku, tyto objekty se kolem své osy točí mnohem pomaleji, než jiné neutronové hvězdy. Běžný magnetar má rotační periodu mezi jednou a deseti sekundami. A tato se navíc stále prodlužuje, jak se ultra silné magnetické pole dostává do stále stabilnějšího stavu. Změna periody je z hlediska lidského poměrně pozvolná, asi o sekundu za tisíc let, ale probíhá.

Výše jsme zmínili, že náhlé změny v době rotace jsou u magnetarů občas pozorovány. Nicméně obvykle se jedná spíše o překotné zrychlení rotační periody, podobný typ zpomalení byl pozorován teprve potřetí. Zrychlení rotace má příčinu v nitru hvězdy. Vnější silně magnetické vrstvy se totiž zpomalují, zatímco vnitřní nezmagnetizované jádro nikoliv. Na styku obou vrstev se potom hromadí napětí, které je v jednu chvíli již neudržitelné a prudce se uvolní tím, že se rotační energie přenese z vnitřních vrstev magnetaru do vnějších.

Umělecká představa magnetaru uvolňujícího energii
Umělecká představa magnetaru uvolňujícího energii
Zdroj: https://www.quantamagazine.org/

Naopak prudké zpomalení rotace nemá zřejmě příčinu uvnitř hvězdy, ale na jejím povrchu či v blízkém okolí. Alespoň to tedy ukazují data z SGR 1935+2154. Když dojde na povrchu magnetaru v důsledku změn magnetického pole k otevření trhliny, podobně jako tomu bylo v tomto případě, vyvrhává hvězda do okolí množství hmoty. Intenzivní proud částic vycházející z otevřené trhliny, podobný hvězdnému větru, by mohl zapříčinit vznik vhodných podmínek pro tak prudkou změnu rotace magnetaru. A to za předpokladu, že by trhlina byla otevřena nejméně několik hodin, což by ale nemuselo představovat problém.

Umělecká představa magnetaru, který uvolňuje radiový záblesk.
Umělecká představa magnetaru, který uvolňuje radiový záblesk.
Zdroj: https://www.esa.int/

Proud částic z magnetaru by měl potenciál nejen ovlivnit a zásadně zpomalit rotační periodu hvězdy, ale rovněž silně ovlivnit magnetické pole a jeho geometrii v bezprostředním okolí magnetaru. Tyto zajímavé jevy, které u magnetarů pozorujeme se podle nového výzkumu dají vysvětlit standardní a již známou fyzikou. Není třeba zavádět žádné nové spekulativní možnosti.

Závěr

Magnetary patří k tomu nejzajímavějšímu, co v našem kosmu najdeme. A díky práci astronomů z celého světa o nich víme už poměrně dost informací. Nový výzkum zcela zapadá do obrazu mimořádně podivných objektů, jež se ale přitom dají vysvětlit nám už známými fyzikálními procesy. Magnetarů nicméně prozatím známe poměrně málo a budoucí výzkumy nám jistě ještě mnohé prozradí.

 

Opravy a doplnění

  • 20. dubna 23:15 – Na základě upozornění od uživatele PetrDub opravuji chybné tvrzení, že se rotační perioda magnetarů zkracuje. Správně má být pochopitelně, že se prodlužuje. Za chybu se omlouvám.

Použité a doporučené zdroje

Zdroje obrázků

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
6 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
PetrDub
PetrDub
1 rok před

Díky za zajímavý článek. Přiznám se ale, že jsem trochu zmaten z těchto dvou vět, resp. mi to nezapadá do kontextu předchozího článku o magnetarech: „Běžný magnetar má rotační periodu mezi jednou a deseti sekundami. A tato se navíc stále zkracuje, jak se ultra silné magnetické pole dostává do stále stabilnějšího stavu.“ Já jsem předchozí článek pochopil tak, že magnetar má silné magnetické pole, a protože i v okolí se nachází vodivé prostředí (ionizovaná hmota z řady příčin), tak dojde ke vzniku vířivých proudů a to v konečném důsledku brzdí magnetar stejně, jako např. rekuperující elektromotor. Proto mají magnetary vůči „obyčejným“ neutronovým hvězdám pomalou rotaci. Z toho mi plyne, že rotační perioda by se měla prodlužovat, nikoliv zkracovat. Samozřejmě v tomto pomíjím níže v článku uvedené rychlé změny rotace, mám na mysli onen dlouhodobý trend.

upgrade
Administrátor
1 rok před
Odpověď  PetrDub

To jste nepochopil zcela správně. Jsem blbec, myslel jsem, že se rotační perioda prodlužuje, ale Bůh ví proč jsem napsal zkracuje. Děkuji za upozornění, opravuji.

Thales
Thales
1 rok před

Pozorovat takové jevy mi přijde jak ze StarTreku a to tím více, čím více o nich víme. A přestože víme více, o to větší je to záhada.

PetrDub
PetrDub
1 rok před

Díky za zajímavý článek. Přiznám se ale, že jsem trochu zmaten z těchto dvou vět, resp. mi to nezapadá do kontextu předchozího článku o magnetarech: „Běžný magnetar má rotační periodu mezi jednou a deseti sekundami. A tato se navíc stále zkracuje, jak se ultra silné magnetické pole dostává do stále stabilnějšího stavu.“ Já jsem předchozí článek pochopil tak, že magnetar má silné magnetické pole, a protože i v okolí se nachází vodivé prostředí (ionizovaná hmota z řady příčin), tak dojde ke vzniku vířivých proudů a to v konečném důsledku brzdí magnetar stejně, jako např. rekuperující elektromotor. Proto mají magnetary vůči „obyčejným“ neutronovým hvězdám pomalou rotaci. Z toho mi plyne, že rotační perioda by se měla prodlužovat, nikoliv zkracovat. Samozřejmě v tomto pomíjím níže v článku uvedené rychlé změny rotace, mám na mysli onen dlouhodobý trend.

Thales
Thales
1 rok před

Pozorovat takové jevy mi přijde jak ze StarTreku a to tím více, čím více o nich víme. A přestože víme více, o to větší je to záhada.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.