sociální sítě

Přímé přenosy

PSLV-XL (Proba-3)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

Cuantianhou

Společnost Space Transportation se sídlem v Pekingu plánuje na druhou polovinu roku 2025 první test svého prototypu znovupoužitelného kosmického letounu Cuantianhou. Společnost vystavila model Cuantianhou na výstavě Space Tech Expo Europe v Brémách.

Americké vesmírné síly

Americké vesmírné síly se připravují na zpoždění vynášení klíčových nákladů národní bezpečnosti na palubě rakety Vulcan od společnosti ULA. Uvedl to generálporučík Philip Garrant, šéf Velitelství vesmírných systémů vesmírných sil.

Lunar Outpos

Společnost Lunar Outpos oznámila 21. listopadu, že podepsala dohodu se SpaceX o použití kosmické lodi Starship pro přepravu lunárního roveru Lunar Outpost Eagle na Měsíc. Společnosti nezveřejnily harmonogram spuštění ani další podmínky obchodu.

JAXA a ESA

Agentury JAXA a ESA 20. listopadu v Tsukubě v Japonsku vydaly společné prohlášení, ve kterém načrtli novou spolupráci v oblastech planetární obrany, pozorování Země, aktivity po ISS na nízké oběžné dráze Země, vesmírná věda a průzkum Marsu.

SEOPS

Společnost SEOPS na Space Tech Expo Europe 19. listopadu oznámila, že podepsala smlouvu se společností SpaceX na vynesení mise plánované na konec roku 2028 z Floridy. Do roku 2028 také získává kapacitu pro blíže nespecifikované další starty SpaceX.

Latitude

Francouzský startup Latitude podepsal víceletou smlouvu se společností Atmos Space Cargo, společností vyvíjející komerční návratová zařízení. Atmos koupí minimálně pět startů rakety Zephyr ročně, a to v letech 2028 až 2032.

Exolaunch

Německý společnost Exolaunch použije svůj nový adaptér Exotube počínaje rokem 2026. Exotube je univerzální modulární adaptér pro integraci, start a rozmístění družic od cubesatů až po 500 kg družice.

Dlouhý pochod 10

Čína provedla úspěšný test oddělení aerodynamického krytu užitečného zatížení pro raketu Dlouhý pochod 10. Test hodnotil design krytů, strukturu připojení, plán oddělení a maximální dostupnou obálku. Všechny testované parametry splňovaly jejich konstrukční požadavky.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Nobelovy ceny za fyziku a kosmonautika

Nobelova cena se v udělovaných oborech obvykle považuje za nejvýznamnější možnou poctu. První ocenění za fyziku obdržel Wilhelm C. Röntgen v roce 1901 a až do roku 2019 (včetně) bylo vyznamenáno 213 osob (z toho 3 ženy). John Bardeen je dosud jediným dvojnásobným držitelem ceny za fyziku, nejmladšímu laureátovi (Lawrence W. Bragg) bylo 25, nejstaršímu (Artur Ashkin) 96 let. Z Českých vědců byl nominován pouze Jaroslav Heyrovský, který roku 1959 nakonec převzal cenu za chemii. I přes zastoupení různých fyzikálních oborů by se oceněné výzkumy přímo související s kosmonautikou daly spočítat na prstech jedné ruky. V minulém století dokonce nebyl žádný takový. Až počátkem nového milénia přišel první a po něm následovaly ještě další dva.

Rentgenové záření (2002)

První záblesk naděje pro kosmonautiku v kontextu Nobelových cen přišel těsně po přelomu tisíciletí s oceněním trojice astrofyziků. Polovinu prémie si rozdělili Raymond Davies (USA) a Masatoši Košiba (Japonsko) za „průkopnické příspěvky k astrofyzice, zejména detekci kosmických neutrin“. Nobelovská komise vzala v úvahu zvláště jejich podíl na experimentech zkoumajících sluneční neutrina, realizovaných na významných neutrinových observatořích Homestake v Jižní Dakotě v USA a Kamiokande-II v Japonsku, které jsou umístěny v bývalých zlatých dolech. Nebudete-li tedy vědět co si počít s vaším nevyužitým zlatým dolem, doporučuji investici do neutrinového detektoru. Vložené prostředky se vám možná brzy vrátí ve formě mezinárodní slávy nebo v podobě finanční odměny ve výši několika milionů švédských korun určené pro každého držitele nejznámější vědecké medaile.

Neutrinový detektor Super-Kamiokande v Japonsku.
Neutrinový detektor Super-Kamiokande v Japonsku.
Zdroj: https://scitechdaily.com/

Ale abych se vrátil, oba vědci dospěli ke shodnému závěru, že jsou schopni naměřit pouze zhruba třetinu očekávaného počtu neutrin. Tuto záhadu nazývanou problém solárních neutrin vyřešily zhruba o dvě desetiletí později týmy z Kanady (Sudbury Neutrino Observatory) a Japonska (Super-Kamiokande) objevem takzvané oscilace neutrin, což vedlo k další Nobelově ceně (2015) pro Arthura B. MacDonalda a Takaaki Kadžitu.

Druhou polovinu prémie obdržel italský vědec Riccardo Giacconi za „průkopnické příspěvky k astrofyzice, které vedly k objevu kosmických zdrojů rentgenového záření“. Giacconi měl totiž klíčový podíl na několika převratných kosmických sondách, zaměřených na výzkum této části elektromagnetického spektra.

Riccardo Giacconi, laureát Nobelovy ceny za fyziku pro rok 2002.
Riccardo Giacconi, laureát Nobelovy ceny za fyziku pro rok 2002.
Zdroj: https://www.eso.org/

Účastnil se již pozorování se satelitem Uhuru (známým též jako SAS 1 nebo Explorer 42), prvním kosmickým objektem zkoumajícím rentgenové záření. Zaráží-li vás zvláštní název družice, měli byste vědět, že slovo „uhuru“ je svahilský výraz pro svobodu, stejně se jmenuje třeba i nejvyšší vrchol Afriky (5 895 m. n. m.) v masivu Kilimandžáro. Jméno vymyslela elektroinženýrka Marjorie Townsend a odkazuje na místo startu, proběhnuvšího na konci roku 1970 z plošiny San Marco nedaleko pobřeží Keni, jejímž úředním jazykem je právě svahilština. V průběhu tříleté mise bylo studováno 339 objektů, mezi nimiž zaujímá zvláštní místo Cygnus X-1, první vážný kandidát na černou díru nebo pulsary Hercules X-1 a Vela X-1.

Mimochodem souhvězdí Labutě a Herkula asi znáte, ale souhvězdí Plachet (latinsky Vela) možná nikoli, což je dáno jeho polohou na jižní hvězdné obloze, u nás není nikdy viditelné. Zajímavé je, že toto souhvězdí pochází i nepochází od samotného Ptolemaia, který určil původních 48 souhvězdí, z nichž se většina zachovala dodnes.

Jak je to možné? Inu, plachty byly původně součástí velkého souhvězdí Loď Argo (latinsky Argo Navis). Loď bájných argonautů plujících za zlatým rounem do Kolchidy zaujímala na obloze o třetinu větší plochu než současné největší souhvězdí Hydra. Astronomové jsou sice na velké věci zvyklí, ale na Nicolase Lacailleho to bylo v 18. století už moc, a proto Loď Argo rozdělil na menší souhvězdí Lodní zádi, Lodního kýlu, Plachet a Kompasu. Nicméně zpět k našemu hrdinovi.

Marjorie Townsend a Bruno B. Rossi u satelitu Uhuru.
Marjorie Townsend a Bruno B. Rossi u satelitu Uhuru.
Zdroj: https://heasarc.gsfc.nasa.gov/

Giacconi později pracoval i v týmech Einsteinova teleskopu a rentgenové observatoře Chandra (pojmenování nese po indicko-americkém astrofyzikovi Subrahmanyanu Chandrasekharovi), jež funguje dodnes. Konec její mise bude naneštěstí již bez Giaconniho, který zesnul ve věku 87 let v prosinci 2018.

Nobelovy ceny se bohužel nedožil Bruno B. Rossi, Giacconiho kolega a spoludržitel druhého nejprestižnějšího fyzikálního ocenění, Wolfovy ceny (1987). Rossi byl jedním z nejvýznamnějších italských experimentálních fyziků minulého století a měl i svůj podíl na kosmickém výzkumu. Koncem 50. let zasedal v poradním orgánu NASA a národní akademie věd pro vědecký výzkum (další členové například James Van Allen nebo Thomas Gold). Jím zkonstruovaný přistroj na družici Explorer 10 detekoval zemskou magnetopauzu a na raketovém experimentu objevili s Giaconnim první zdroj kosmického rentgenového záření Scorpius X-1. Zemřel ale již roku 1993 a tedy nemohl Nobelovu cenu, podle platných pravidel, obdržet.

Reliktní záření (2006)

Jeden jediný rok a stalo se tolik důležitých událostí. Černá Hora vyhlásila nezávislost na Srbsku, Al-Džazíra začala vysílat v angličtině, Microsoft ukončil podporu operačního systému Windows ME a Nobelovská komise přepsala historii cen za fyziku. Ocenila totiž Johna Mathera a George Smoota, muže zodpovědné za dva hlavní experimenty sondy COBE, určené k výzkumu reliktního záření. Poprvé (a zatím naposledy) nebyli laureáti vyznamenání ani za významnou teoretickou předpověď, ani za přelomový experiment či vynález, nýbrž de facto za konstrukci konkrétního vědeckého přístroje, v tomto případě sondy COBE.

George Smoot (uprostřed) a John Mather (vpravo) při převzetí Nobelovy ceny za fyziku pro rok 2006.
George Smoot (uprostřed) a John Mather (vpravo) při převzetí Nobelovy ceny za fyziku pro rok 2006.
Zdroj: https://www.nobelprize.org/

První předpověď reliktního záření pochází ze 40. let minulého století od George Gamowa, Ralpha Alphera a Roberta Hermana. Jejich článek (publikovaný 1. dubna a nazývaný alfa-beta-gama model) ovšem na nějakou dobu zapadl, a proto ke stejnému výsledku v polovině 60. let nezávisle dospěla i jiná skupina vědců v čele s Robertem Dickem a Jamesem Peeblesem (Nobelova cena 2019 – Peebles). Zhruba ve stejné době bylo toto záření, víceméně náhodou, objeveno. V Bellových laboratořích se o to zasloužili Arno Penzias a Robert Wilson (Nobelova cena 1978 pro oba). K jejich objevu se váže pěkná, avšak již poměrně známá historka s holuby. Pokud jste ji ještě neslyšeli, dovolím si vás odkázat na krátké video, kde vám ji odvypráví sám Robert W. Wilson.

Později se začaly uplatňovat i kosmické experimenty. První, RELIKT-1, byl umístěný na satelitu Prognoz 9, který měl za cíl i výzkum zdrojů gama záření v kosmu. Start proběhl roku 1983 na raketě Molnija-M z kosmodromu Pleseck.

Nejprve byl určen horní limit anizotropií reliktního záření, pozdější analýza získaných dat ukázala, že přístroje tyto drobné teplotní odchylky dokonce detekovaly, což ukazovalo na pěkný soulad s teorií (bez teplotních fluktuací by nemohly ve vesmíru vzniknout složitější struktury). Výsledek zveřejnil tým Andreje Bruchanova a Igora Strukova v lednu 1992. Na RELIKT-1 měl navázat vylepšený experiment RELIKT-2, ale jeho realizaci zastavily finanční problémy po rozpadu SSSR.

Američané plánovali družici specializovanou na studium reliktního záření již od roku 1977 (první návrh dokonce z roku 1974) v rámci bohatého programu Explorer. Proto se občas můžete setkat s názvem Explorer 66, ačkoli mnohem častěji je nazývána COBE (Cosmic Background Explorer).

Podle původních představ měla do kosmu zamířit v červenci 1988 v rámci mise raketoplánu STS-82-B se startem z Vandenbergovy letecké základny. Po havárii Challengeru z ledna 1986 a následném přerušení letů raketoplánů však bylo nutné najít náhradní nosič i termín startu. COBE nakonec, 18. listopadu 1989, vynesla k obloze ikonická raketa Delta II.

Sonda COBE a její vědecké přístroje.
Sonda COBE a její vědecké přístroje.
Zdroj: https://www2.lbl.gov/

Na palubě nesla sonda tři experimenty. První z nich DIRBE byl zaměřen na výzkum infračervené oblasti spektra, klíčovou osobou byl Mike Hauser a pro potřeby tohoto článku si jej dovolím ignorovat. Pro nás jsou zajímavější další dva přístroje, DMR a FIRAS. DMR neboli Differential Microwave Radiometer navrhl George Smoot a sloužil ke změření anizotropie reliktního záření. Teplota záření je závislá na směru, je mírně teplejší v jednom směru a mírně chladnější v jiném, což může mít několik příčin. V tomto případě vědce zajímaly teplotní odchylky vzniklé již na počátku existence vesmíru. Druhý experiment FIRAS (Far-InfraRed Absolute Spectrophotometer) byl určen k detekci spektra reliktního záření a stál za ním John Mather.

Výsledky obdobné sovětským přišly v dubnu 1992. DMS nalezl anizotropii reliktního záření a FIRAS potvrdil, že spektrum reliktního záření přesně odpovídá spektru záření absolutně černého tělesa o teplotě 2,7 K. Též došlo ke zpřesnění některých kosmologických parametrů našeho vesmíru. Pokud se někdy setkáte s odhadem věku vesmíru 15 miliard let, vězte, že toto číslo pochází od sondy COBE, předtím byla v určení doby existence vesmíru značná nejistota.

COBE přestala fungovat těsně před Vánoci 1993, ale úspěšně na ni navázaly další dvě mise. Nejprve americká Wilkinson Microwave Anisotropic Probe (WMAP) a o osm let později Planck z dílny Evropské kosmické agentury, který provedl zatím nejpreciznější měření a dále upřesnil mnohé kosmologické parametry.

Teplotní fluktuace naměřené sondou COBE, alias "tvář Boha".
Mapa teplotních fluktuací reliktního záření ze sondy COBE, alias „tvář Boha“.
Zdroj: https://science.nasa.gov/missions/cobe

Rozhodnutí Nobelovské komise v této věci ovšem vzbudilo určité vášně. Američané Mather a Smoot ocenění získali, zatímco vedoucí sovětského týmu Bruchanov a Strukov byli opomenuti, přestože měl jejich tým správná data dříve. To lze zřejmě přičíst i vědeckému marketingu. Zatímco sovětská, respektive ruská věda byla po dlouhou dobu před veřejností víceméně uzavřena, američtí kolegové uměli svůj úspěch patřičně prodat. Například na tiskové konferenci, kde byla zveřejněna první mapa reliktního záření ze sondy COBE, prohlásil jeden z vědeckých vedoucích týmu sondy, že se při pohledu na tento snímek díváme do tváře Boha.

Rozpínání vesmíru (2011)

Zatím poslední výzkum související s kosmonautikou oceněný Nobelovou cenou přišel na počátku 10. let. Tehdy byli vyznamenáni astrofyzikové za změření zrychlené expanze vesmíru.

Až do 20. století považovali vědci vesmír za statický. První náznak možného rozpínání či smršťování podal Alexander Friedman na počátku 20. let, když vyřešil Einsteinovy rovnice obecné relativity. Einsteinovi se to příliš nelíbilo a reagoval na Friedmanův dopis slovy: „Vaše matematika je správná, avšak Vaše fyzika je odporná.“ K podobnému řešení však zanedlouho dospěl i belgický fyzik Georges Lemaitre a společně s Edwinem Hubblem podali pro rozpínání vesmíru důkazy natolik přesvědčivé, že Einstein brzy uznal svůj omyl.

Postupně se v průběhu let zrodil standardní kosmologický model s počátkem vesmíru ve velkém třesku před zhruba 14 miliardami let, přičemž se mělo za to, že se jeho rozpínání vlivem gravitace v čase zpomaluje. Brzy ale vyplavaly na světlo vážné problémy standardního modelu. Někteří teoretici (Guth, Linde, Steinhardt, Starobinskij…) je řešili přidáním fáze prudké expanze na počátku vesmíru (inflace), která většinu problému odstranila. Odkud se vzala inflace? To pravděpodobně nikdo netuší. Existuje například možnost, že byla do makroskopických rozměrů nafouknuta jedna z prvotních kvantových fluktuací. V takovém případě platí slova Alana Gutha, autora inflační teorie, o tom, že vesmír je vlastně takový oběd zadarmo.

Počátkem 90. let začaly astrofyziky zabývající se rozpínáním a vývojem vesmíru velmi zajímat supernovy typu Ia. Tento typ explodujících hvězd je poněkud odlišný od běžné představy supernovy. Nejde o hvězdu v závěrečném stádiu, ale o dvojhvězdu, kdy je jedna složka v hlavní posloupnosti (hvězdy spalující vodík), zatímco její partner je bílý trpaslík (závěrečná fáze vývoje lehčích hvězd).

Supernova typu Ia.
Supernova typu Ia.
Zdroj: https://phys.org/

U bílých trpaslíků je známá jejich maximální hmotnost, takzvaná Chandrasekharova mez (stejný muž po němž se jmenuje rentgenová observatoř Chandra), jejíž hodnota je 1,44 hmotnosti Slunce. Při překročení této meze se bílý trpaslík stává nestabilní a exploduje právě jako supernova typu Ia. Ve dvojhvězdách dochází k přetékání hmoty z hvězdy hlavní posloupnosti na menšího bílého trpaslíka a při překročení zmíněného limitu se dočkáme velmi jasné exploze.

Tyto výbuchy jsou zajímavé tím, že vydávají největší množství energie ze všech typů supernov, v jednu chvíli může jediná supernova zářit více než všechny další hvězdy v dané galaxii dohromady. A co víc, díky univerzální platnosti Chandrasekharovy meze, mají velmi podobný průběh po celém vesmíru. To z nich dělá ideální nástroj pro tzv. standardní svíčky, tedy objekty používané pro určování vzdáleností ve vesmíru.

Pokud spatříme vzdálenou supernovu, je nejprve potřeba změřit její spektrum, z něj se totiž dá zjistit o jaký typ supernovy jde. Předpokládejme, že vidíme explozi supernovy typu Ia (ve spektru chybí čáry vodíku, a naopak vidíme křemík). Díky platnosti Chandrasekharova limitu víme, že výbuch uvolní vždy zhruba stejné množství energie a známe tedy rovněž absolutní magnitudu (hvězdná velikost při pozorování ze vzdálenosti 10 parseků). A protože taktéž umíme změřit relativní jasnost pozorovaného výbuchu, lze odvodit i vzdálenost pozorované supernovy.

Astronomové i fyzikové si potenciál supernov typu Ia brzy uvědomili. Vznikly rovnou dva týmy, kladoucí si za cíl pozorování těchto supernov se záměrem přesněji změřit rychlost expanze vesmíru a její vývoj v minulosti. První vedl Saul Perlmutter a jmenoval se Supernova Cosmology Project (SCP), druhému šéfoval Brian Schmidt a nesl název High-Z Supernova Search Team (HZSST), kde „High-Z“ značí vysoký rudý posuv. Obě skupiny detekovaly celou řadu požadovaných supernov na mnoha různých astronomických observatořích a po dlouhé snaze se jim podařilo získat i pozorovací čas na slavném Hubbleově kosmickém teleskopu, což poskytlo šanci zachytit i velmi vzdálené supernovy (rekordní vzdálenost byla 11 miliard světelných let) klíčové pro celý výzkum, poněvadž umožnily určit rychlost expanze vesmíru před mnoha miliardami let.

Hubbleův kosmický dalekohled.
Hubbleův kosmický dalekohled.
Zdroj: https://www.nasa.gov/hubble25-social

V roce 1998 již měly oba týmy dostatek dat na to, aby mohly svým prohlášením doslova šokovat svět, časopis Science vyhlásil jejich objev nejdůležitějším vědeckým počinem roku. Podle dostupných důkazů se rychlost rozpínání vesmíru v rozporu s původními předpoklady v čase nesnižuje, ale právě naopak. Před zhruba 7 miliardami let se rychlost expanze začala zvyšovat a od té doby trvale roste. Co za tím stojí? Nevíme. Často se hovoří o temné energii, která podle posledních měření sondy Planck tvoří 68% hmoty/energie vesmíru. Co ale tato temná energie ve skutečnosti je nemáme zatím tušení. Označení je to líbivé, avšak jde spíše o symbol naší neznalosti. Dodnes jde o jeden z největších nevyřešených problémů současné fyziky. Někdy se zmiňuje pátá dosud neznámá síla či energie vakua, ale to jsou prozatím jen spekulace. Kdo dokáže tuto záhadu objasnit má, myslím si, Nobelovu cenu jistou.

Jelikož byla tato měření brzy podpořena dalšími důkazy především z rozložení hustotních shluků v raném vesmíru (baryonové akustické oscilace) a z reliktního záření, a protože od té doby členové obou týmů i jiní astrofyzikové pozorovali mnoho dalších supernov typu Ia (opět se značným podílem Hubbleova teleskopu), přičemž nová data dobře odpovídala hodnotám zjištěným SCP a HZSST v 90. letech, rozhodla se Nobelovská komise vyznamenat vedoucí obou týmů, Perlmuttera a Schmidta, a také Adama Riesse z HZSST, kvůli zásadnímu podílu na publikovaných výsledcích, oceněním za fyziku pro rok 2011.

Držitelé Nobelovy cena za fyziku pro rok 2011. Zleva Adam Riess, Brian Schmidt a Saul Perlmutter.
Držitelé Nobelovy ceny za fyziku pro rok 2011. Zleva Adam Riess, Brian Schmidt a Saul Perlmutter.
Zdroj: https://www.theguardian.com/

I zde bylo, vzhledem k velikosti obou skupin, mnoho vynikajících astrofyziků opomenuto. Ocenění nedostal například Robert Kirshner, autor myšlenky využití supernov typu Ia, což nesla řada lidí poměrně nelibě. Z dalších známých jmen stojí za zmínku třeba Alexej Filippenko, nejcitovanější astrofyzik v letech kolem přelomu tisíciletí nebo Bruno Leibundgut, který před několika roky navštívil naši zemi a poskytl rozhovor České televizi.

Závěr

Viděli jsme, že mezi oceněnými výzkumy jsou ty, které mají přímou souvislost s kosmonautikou zastoupeny jen velmi řídce. Což je dáno poměrně pozdním nástupem kosmických sond jakožto astronomických observatoří i jistou konzervativností při udílení cen. Přesto věřím, že jde o projekty velmi zajímavé. A vzhledem ke startu mnoha nových špičkových observatoří se můžeme těšit, že se snad počet Nobelových cen souvisejících s kosmonautikou rozroste.

Zdroje obrázků:
https://upload.wikimedia.org/wikipedia/en/e/ed/Nobel_Prize.png
https://scitechdaily.com/images/Kamioka-Observatory-777×437.jpg
https://www.eso.org/public/archives/images/original/dg-ricardo_giacconi-cc.tif
https://heasarc.gsfc.nasa.gov/Images/uhuru/uhuru_weight.gif
https://www.nobelprize.org/uploads/2018/06/mather_smoot_lecture2_photo.jpg
https://www2.lbl.gov/Science-Articles/Archive/Phys-Gruber-Prize-2006.html

https://science.nasa.gov/…/2011/07/21/403322main_COBEallsky_full.jpg
https://phys.org/news/2014-08-ia-supernovae-stem-explosion-white.html
https://scx2.b-cdn.net/gfx/news/hires/2014/image001.jpg
https://www.nasa.gov/sites/default/files/thumbnails/image/345535main_hubble1997_hi_0.jpg
https://static.guim.co.uk/…/4/1317739627902/Nobel-prize-winning-profe-004.jpg

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
15 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
David R.
David R.
4 let před

Já bych si strašně moc přál, aby na ten seznam v této dekádě přibyli pánové Konstantin Batygin and Michael E. Brown, až konečně najdou to, co hledají. Čeká nás pak naprosto extrémní svět a stejně extrémní mise k němu.

SaturnV
SaturnV
4 let před

Moc zajímavý článek. Tu historku s holuby jsem slyšel poprvé.

SaturnV
SaturnV
4 let před

Tu jsem taky neznal. Je vidět, že vás psaní baví. Jestli jsem to správně pochopil, tohle byl váš první článek. Z vašeho komentáře je vidět, že budete psát článek další a to o Feynmanovi. A toho pro změnu znám! Už se těším.

Lopour
Lopour
4 let před

Díky za článek, je pro mne velmi zajímavý a oceňuji, že je i moc pěkně napsán.
Takže se moc těším na další!

Jan Jancura
Jan Jancura
4 let před

Zajímavý a čtivý článek.Na článek o Richardu Feynmanovi se rovněž těším, četl jsem od něj knihu o těch jeho slavných diagramech, ty jsem jakž takž chápal. Ale mám i jeho 1. díl přednášek z fyziky, kde jsem neslavně skončil u prvního příkladu a tak jsem ji ani nedočetl. Jednak od té doby co jsem absolvoval VŠ uběhlo drahně let a navíc na universitách se matematika a fyzika přednáší jinak než na technice.

Juraj Rojko
Juraj Rojko
4 let před

Feymanovy přednášky z fyziky určitě nejsou beletrie, ale jsou to jedny z nejsrozumitelněji napsaných učebnic fyziky a jako kluk jsem je četl opravdu s nadšením. Jejich úroveň je někde mezi naší středoškolskou a vysokoškolskou fyzikou a jsou tedy skvělou přípravou např. na Matfyz. Alespoň tomu tak bylo za časů mých studií… Jsou i jiné důvody proč na jméno Feynman tak slyším, ale ty nebudu rozebírat, podstatně je to, že se na váš článek už teď těším!

Jan Jancura
Jan Jancura
4 let před

Samozřejmě jsem to nečetl jako beletrii, text jsem chápal, jednalo se především o příklady. Chtěl jsem si zjistit co si po těch letech ze studií ještě pamatuji. Problém byl zejména v rozdílném přístupu k fyzice a matematice mezi universitou a technikou.

Petr Hajek
Petr Hajek
4 let před

Moc pěkné shrnutí ,děkuji a přeji mnoho chuti do dalších článků.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.