Štítek ‘reliktní záření’

Arno Allan Penzias (1933 – 2024)

Svět fyziky zasáhla 22. ledna letošního roku nesmírně smutná zpráva. Ve věku 90 let nás navždy opustil vynikající americký kosmolog, astronom a fyzik Arno Allan Penzias, držitel Nobelovy ceny pro rok 1978. Jeho výzkum byl mimořádně důležitý z hlediska fyzik, avšak velmi ovlivnil i kosmonautiku. V zásadě to byl totiž právě Penzias, kdo umožnil existenci sond COBE, WMAP, Planck nebo budoucí LiteBIRD. Proto se domnívám, že je zcela na místě si tohoto jednoho z nejvýznačnějších kosmologů 20. století připomenout i na našem webu.

Zemřel americký fyzik Arno Penzias

22. ledna zesnul ve věku 90 let vynikající americký fyzik a astronom Arno A. Penzias, spoluobjevitel reliktního záření z počátku vesmíru. Jeho výzkum tak de facto vedl až k sondám COBE, WMAP či Planck. 28. ledna 10:00

Planck – záhada chladné skvrny

Planck

Kosmologie je rychle se rozvíjející vědou, která nám odhaluje čím dál více tajemství o našem vesmíru. S tím, jak se pozorovací technika stále více zdokonaluje však dochází i k tomu, že se objevují nové záhady. Jedna taková má svůj prapůvod už v datech z americké sondy WMAP a pozdější evropské družice Planck, které zkoumaly reliktní záření. Jedná se o poměrně podivný výsledek, který sice nemusí nic zvláštního znamenat, ale na druhou stranu má též potenciál změnit svět fyziky. Proto se na něj dnes podíváme podrobněji.

WMAP, Lyman Page a moderní kosmologie

Sonda Wilkinson Microwave Anizotropy Probe.

Intenzivní výzkum reliktního záření, prováděný nejlépe z kosmického prostoru, patří již několik desetiletí do standardní výbavy moderní kosmologie. Proto se od konce 80. let v kosmickém prostoru vystřídaly tři „západní“ sondy. Zatímco však COBE většina lidí zná, jelikož byla první a Planck naopak proto, že z něj pochází nejnovější a nejpřesnější výsledky, americká sonda Wilkinson Microwave Anisotropic Probe (WMAP) stojí trochu v pozadí. A to je opravdu škoda, neboť WMAP je sondou neméně důležitou než COBE nebo Planck a její značný význam pro formování našich současných představ o vesmíru nelze opomenout. Připomeňme si proto dnes tuto důležitou fyzikální laboratoř i jednoho z jejích tvůrců Lymana Page.

Co nám může sonda Planck prozradit o velikosti a tvaru vesmíru?

Sonda Planck

V loňském roce se kosmologie dostala i do prostředí sdělovacích prostředků a sociálních sítí. O odborných tématech souvisejících s naším vesmírem najednou debatovali i běžní lidé na internetu. A není divu, francouzsko-německá skupina kosmologů uveřejnila vědeckou studii, která se na základě analýzy dat ze sondy Planck snaží vyřešit záhady, které fyziky i veřejnost zajímají velmi dlouho. Jak velký je náš vesmír? A jaký má tvar? Pokud vás zmíněný výzkum minul, odpovědi jsou možná poněkud překvapivé. Jak jsou však dané výsledky relevantní? Je skutečně na místě jejich velmi odvážná interpretace, které se dopouštěla řada diskutujících v internetových diskuzích?

Historie kosmologie, reliktní záření a kosmický výzkum

Vznikem a vývojem vesmíru se zabývá celá řada teorií a hypotéz. Některé jsou pavědecké a pseudovědecké, jiné náboženské a mytologické. Přestože lze bezesporu mezi oběma skupinami najít zajímavé myšlenky, dnes se budeme zabývat pouze teoriemi vědeckými. Respektive pouze jednou z nich, teorií velké třesku, nejúspěšnější kosmologickou teorií všech dob. Její nejnovější verzi možná znáte jako standardní kosmologický model nebo též model ΛCDM. Cesta k věrohodné teorii vzniku a vývoje našeho vesmíru byla ale velmi dlouhá a náročná. Od doby antických filosofů a prvních moderních vědců, přes posměch kosmologům ze strany astronomů a fyziků z jiných oborů až po velké úspěchy v posledních dekádách. Vydejte se na podivuhodnou pouť za poznáním naší vlastní historie.

Nevyřešené problémy ve fyzice a kosmický výzkum

Fyzika je fascinující vědou, která nám za staletí své existence odhalila již mnoho záhad o světě kolem nás, od tajemství vesmíru až po složení hmoty. Snad ještě více otázek však zůstává nezodpovězeno, ačkoliv na nich mnohdy pracují největší mozky vědeckého světa. To by vás ale nemělo překvapit, často se říká, že jeden vyřešený problém ve vědě odhalí dalších deset problémů o nichž nevíme nic. Dnes se na některé z těchto velkých záhad společně podíváme, nejméně dvě totiž úzce souvisí i s kosmonautikou. Představíme si nicméně i další mimořádně zajímavé problémy, každý z nich v případě vyřešení znamenající Nobelovu cenu za fyziku a věčnou slávu.

Nobelovy ceny za fyziku a kosmonautika

Nobelova cena se v udělovaných oborech považuje za nejvýznamnější možnou poctu. První ocenění za fyziku bylo předáno Wilhelmu C. Röntgenovi již v roce 1901 a do letošního roku bylo vyznamenáno 213 osob. John Bardeen získal cenu dvakrát, nejmladšímu laureátovi (Lawrence W. Bragg) bylo 25, nejstaršímu (Artur Ashkin) 96 let. Z Českých vědců byl nominován pouze Jaroslav Heyrovský, který roku 1959 nakonec získal ocenění za chemii. I přes zastoupení různých fyzikálních oborů by se oceněné výzkumy přímo související s kosmonautikou daly spočítat na prstech jedné ruky. V minulém století dokonce nebyl žádný takový. Až počátkem nového milénia přišel první a po něm následovaly ještě další dva.

ESA – 18. díl – Astronomický stroj času

1. uvodni obrazek

Nenechte se zmást, nemáme na mysli skutečný stroj času tak, jak jej známe z mnoha vědecko-fantastických filmů. Evropská kosmická agentura, respektive její představitelé a pracovníci takto ale skutečně nazývají mikrovlnný teleskop Planck, jemuž se v dnešním díle našeho seriálu budeme věnovat. Důvod, proč je tento teleskop nazýván strojem času, je prostý. Planck se zabýval monitorováním prastarého kosmického mikrovlnného pozadí, které je v astronomii spíše známo pod názvem reliktní záření. Je to první forma elektromagnetického záření, které ve vesmíru vzniklo a tak není pochyb o tom, že pohled na něj je skutečnou cestou do hlubin minulosti.

Hubbleova nová ultrahluboká pole překonávající všechna přechozí

Hubbleův vesmírný dalekohled je bezespotu historicky přelomovým zařízením v našem zkoumání vesmíru. První velký teleskop, který opustil područí pozemské atmosféry, jež nás sice po miliardy let chrání před smrtícím působením tvrdého kosmického záření, ale zároveň znemožňuje pozorovat vzdálené kosmické objekty ve většině důležitých oborů elektromagnetického záření. Dobrá – působivý začátek, ale není už HST jen zastaralou vlajkovou lodí kosmického výzkumu, který už řekl vše co mohl a veškeré další náklady na jeho údržbu jsou jen zbytečnou investicí?