sociální sítě

Přímé přenosy

Falcon 9 (Hera)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

Near Space Network

NASA 17. září oznámila, že udělila kontrakt společnosti Intuitive Machines na podporu Near Space Network. Jedná se o systém, který poskytuje komunikační služby pro mise NASA na oběžné dráze Země a cislunárním prostoru.

Ariane 6

Evropští představitelé tvrdí, že změna softwaru by měla vyřešit problém, který nastal při inauguračním startu Ariane 6 v červenci s horním stupněm.

Space Network Services

Impulse Space oznámila 16. září kontrakt na zajištění dopravy na geostacionární oběžnou dráhu pro družice od francouzského startupu Space Network Services. Byla to první oznámená dohoda o geostacionární službě Impulse Space, která byla představena v srpnu.

U.S. Space Force

U.S. Space Force udělily téměř 45 milionů dolarů Rochesterskému technologickému institutu a Michiganské univerzitě, aby vedly pokročilý výzkum vesmírné energie a pohonu.

Lockheed Martin

Lockheed Martin získal kontrakt v hodnotě 297,1 milionu dolarů na vývoj mapovačů blesků pro budoucí geostacionární konstelaci Národního úřadu pro oceán a atmosféru.
Smlouva nařizuje vyvinout dva letové přístroje a zahrnuje opce na dva další.

York Space Systems

Americké vojenské družice postavené společností York Space Systems si úspěšně vyměňovaly data na oběžné dráze pomocí optických komunikačních terminálů Tesat-Spacecom.

Ursa Major

Ursa Major, společnost zabývající se raketovým pohonem se sídlem v Coloradu, získala od americké armády nové finanční prostředky ve výši 12,5 milionu dolarů na pokrok ve vývoji a výrobě raketových motorů na tuhé pohonné látky.

U-space

Francouzský startup U-space bude spolupracovat s nadnárodním dodavatelem raket MBDA na vývoji dvojice družic, které budou demonstrovat detekci, charakterizaci a zaměřování družic a jiných zařízení ve vesmíru. Družice spadají do plánů agentury DGA .

Samara Aerospace

Startup Samara Aerospace získal kontrakt společnosti SpaceWERX na vývoj zlepšeného zaměřování družic o hmotnosti o 200 až 500 kilogramů.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Aktivní seriály

Náš web se může pyšnit širokou a pestrou paletou seriálů, které jsou u našich čtenářů oblíbené.

Ukončené seriály

Mimo naše aktivní seriály je tu také spousta těch, které se věnovaly například historickým tématům. I přesto, že patří mezi starší, na jejich kvalitě to rozhodně neubírá! Toužíte zjistit něco o historii, nebo se zkrátka jen kochat nádhernými fotografiemi? Pak jsou tyto seriály právě pro Vás.

Přístroje z Evropy pomáhají Juno vidět radiaci

Vědci zapojení do mise americké sondy Juno dokázali vytvořit první trojrozměrnou mapu radiace v systému planety Jupiter. Kromě charakterizace intenzity vysokoenergetických částic v okolí oběžné dráhy ledového měsíce Europa tato mapa ukazuje, jak je radiační prostředí tvarováno menšími měsíci, které kolem Jupiteru krouží blízko prstenců planety. Celá práce vychází z dat nasbíraných přístrojem ASC (Advanced Stellar Compass), který navrhli a postavili experti z Dánské technické univerzity, a z kamerového systému SRU (Stellar Reference Unit), který byl postaven firmou Leonardo SpA z Florencie. Oba datové soubory se navzájem doplňují a pomáhají vědcům charakterizovat radiační prostředí o různých energiích.

Na základě dat ze sledovače hvězd ASC (Advanced Stellar Compass) na palubě sondy Juno vznikl model intenzity záření v různých bodech oběžné dráhy sondy kolem Jupiteru, který zobrazuje tento graf.
Na základě dat ze sledovače hvězd ASC (Advanced Stellar Compass) na palubě sondy Juno vznikl model intenzity záření v různých bodech oběžné dráhy sondy kolem Jupiteru, který zobrazuje tento graf.
Zdroj: https://www.nasa.gov/

Jak ASC, tak i SRU jsou kamery optimalizované pro snímání málo osvětlených scén a primárně pomáhají s navigací v hlubokém vesmíru. Takovéto typy přístrojů najdete prakticky na každé sondě. Ale k tomu, abyste je využívali jako radiační detektory, musel se tým kolem sondy Juno podívat na tyto kamery z úplně jiné perspektivy. „U sondy Juno jsme zkusili inovovat způsob, kterým používáme naše senzory, abychom se dozvěděli něco o okolním prostředí. Využili jsme přitom mnoho vědeckých přístrojů různými způsoby, pro které nebyly navrženy,“ vzpomíná Scott Bolton, hlavní řešitel mise Juno ze Southwest Research Institute v San Antoniu a dodává: „Tohle je první podrobná radiační mapa regionu na těchto vyšších energiích. Jde o důležitý krok k pochopení, jak radiační prostředí v okolí Jupiteru funguje. To nám pomůže plánovat pozorování u příští generace misí, které se sem vydají.

Na konci jednoho ze tří fotovoltaických panelů. sondy Juno je nejen magnetometr, ale i čtyři kamery ASC (Advanced Stellar Compass).
Na konci jednoho ze tří fotovoltaických panelů. sondy Juno je nejen magnetometr, ale i čtyři kamery ASC (Advanced Stellar Compass).
Zdroj: https://upload.wikimedia.org

Přístroj ASC tvoří čtyři sledovače hvězd umístěné na rameni magnetometru. Jejich úkolem je pořizovat snímky hvězdné oblohy, aby mohl palubní systém sondy určit její orientaci v prostoru, což je klíčové pro úspěšná měření magnetického pole. Ovšem tento přístroj se také ukázal jako užitečný detektor vysokoenergetických toků částic v magnetosféře Jupiteru. Kamera zaznamenává toto „tvrdou radiaci“, tedy ionizující záření, které dopadá na sondu s dostatečnou energií, která mu umožňuje projít stíněním přístroje ASC. „Každou čtvrt sekundu pořídí ASC snímek hvězdného pole,“ popisuje John Leif Jørgensen z Dánské technické univerzity zapojený do mise Juno a pokračuje: „Vysokoenergetické elektrony, které proniknou štítem, zanechají na snímcích svůj jasný podpis, který vypadá trochu jako světlená stopa světlušky. Přístroj je naprogramován, aby počítal tyto světlušky, což nám dává přesné údaje o úrovních radiace.

Jelikož se dráha  sondy Juno kolem Jupiteru neustále mění, dokázala už sonda prozkoumat prakticky všechny  oblasti v okolí planety. Data z ASC naznačují, že u dráhy měsíce Europa je více hodně vysokoenergetického záření oproti nízkoenergetickému, než se očekávalo. Data také potvrzují, že na straně Europy mířící ve směru pohybu měsíce po oběžné dráze je více vysokoenergetických elektronů než na straně opačné. Je to tím, že většina elektronů v Jupiterově magnetosféře obíhá Europu zezadu v důsledku rotace planety, zatímco elektrony s velmi vysokou energií jsou unášeny dozadu, skoro jako ryby plující proti proudu, a narážejí do „přední strany“ Europy.

Stáčení oběžné dráhy sondy Juno kolem Jupiteru.
Stáčení oběžné dráhy sondy Juno kolem Jupiteru.
Zdroj: https://photojournal.jpl.nasa.gov/

Data o radiaci u Jupiteru ale nejsou jediným podílem přístroje ASC pro celou misi. Ještě než sonda dorazila k Jupiteru, byla data z ASC využita k měření dopadů mezihvězdného prachu na sondu Juno. Přístroj také objevil dříve nezaznamenané komety, k čemuž se využila opět stejná technika detekce prachových částic a rozlišila malé kousky sondy vyvržené mikroskopickým prachem, který dopadl na Juno vysokou rychlostí.

Kamera SRU (Stellar Reference Unit).
Kamera SRU (Stellar Reference Unit).
Zdroj: https://www.researchgate.net/

Stejně jako ASC i SRU byla použita jako radiační detektor a snímač slabě osvětlených scén. Data z obou přístrojů naznačují, že (podobně jako Europa) se malé „pastýřské“ měsíce, které obíhají uvnitř (nebo v blízkosti) jupiterových prstenců (a pomáhají udržovat jejich tvar) také zřejmě interagují s radiačním prostředím planety. Když sonda prolétává siločárami magnetického pole, které jsou spojeny s těmito měsíci, či hustým prachem, počty radiačních stop v ASC i SRU prudce klesají. SRU také pořizuje vzácné, slabě osvětlené snímky prstenců z jedinečné perspektivy sondy Juno. „Kolem vzniku Jupiterových prstenců je stále hodně záhad a dřívější sondy pořídily jen velmi málo jejich snímků,“ říká Heidi Becker, hlavní spoluřešitelka přístroje SRU a vědecká pracovnice Jet Propulsion Laboratory v jižní Kalifornii a dodává: „Někdy máme štěstí a jeden z malých pastýřských měsíčků se podaří na snímku zachytit. Tyto snímky nám umožňují zjistit více o tom, kde přesně se momentálně tyto měsíce nacházejí a sledovat distribuci prachu v relativních vzdálenostech od Jupiteru.

Přeloženo z:
https://www.nasa.gov/

Zdroje obrázků:
https://www.nasa.gov/wp-content/uploads/2024/08/1-pia26350-pj62-jupiter.png
https://www.nasa.gov/wp-content/uploads/2024/08/2-jlj-omniflux-update.jpg
https://junomag.gsfc.nasa.gov/images/Juno_mag_boom3.jpg
https://photojournal.jpl.nasa.gov/jpeg/PIA24308.jpg
https://www.nasa.gov/wp-content/uploads/2024/08/pia26331.jpg
https://www.researchgate.net/…/Juno-Stellar-Reference-Unit-optical-head.jpg

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Štítky:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
0 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
https://kosmonautix.cz/2024/08/22/pristroje-z-evropy-pomahaji-juno-videt-radiaci/