Nová studie naznačuje, jak a proč se měsíc Io stal vulkanicky nejaktivnějším tělesem ve Sluneční soustavě. Vědci zapojení do americké mise Juno totiž zjistili, že tamní vulkány jsou zřejmě napájeny z vlastních zásobníků magmatu spíše než z globálního magmatického oceánu. Tento objev by mohl vyřešit 44 let starou záhadu o podpovrchovém původu výrazných geologických útvarů měsíce Io. Vědecký článek o zdrojích vulkanismu na Io byl vydán 12. prosince v časopise Nature. Jeho výsledky byly prezentovány během tiskové konference na každoročním setkání Americké geofyzikální unie ve Washingtonu, což je největší americké setkání vědců věnujících se Zemi i dalším kosmickým objektům.
Io můžeme rozměrově přirovnat k našemu Měsíci, přesto jde o vulkanicky nejaktivnější těleso v naší soustavě. Tento měsíc je domovem zhruba 400 vulkánů, které vyvrhují lávu při téměř nepřetržitých erupcích, což postupně pokrývá povrch novými vrstvami. Ačkoliv byl měsíc objeven Galileem Galileim 8. ledna 1610, jeho vulkanická aktivita byla odhalena až v roce 1979. Vědkyně Linda Morabito z Jet Propulsion Laboratory v jižní Kalifornii tehdy jako první identifikovala výron vulkanických plynů na snímku pořízeném sondou Voyager 1. „Od tohoto objevu vrtalo planetologům hlavou, jak jsou sopky na Io napájeny podpovrchovým magmatem,“ říká Scott Bolton, hlavní řešitel mise Juno ze Southwest Research Institute v San Antoniu, a dodává: „Je tam mělký oceán doběla rozžhaveného magmatu, nebo jsou zdroje vulkanismu spíše lokální? Věděli jsme, že data z blízkých průletů Juno by mohla nabídnout odpověď.“
Sonda Juno provedla své extrémně blízké průlety kolem Io v prosinci 2023 a v únoru 2024, kdy se dostala do vzdálenosti zhruba 1500 kilometrů od jeho povrchu, který někteří přirovnávají k pizze. Během těchto průletů sonda komunikovala s pozemskou sítí Deep Space Network a pořizovala vysoce přesná dvoufrekvenční dopplerovská data. Ta byla využita k měření gravitace Io a sledování, jak ovlivňuje akceleraci sondy. Členové mise se z těchto průletů dozvěděli mnoho o gravitaci měsíce, přičemž některé poznatky vedly k nové studii odhalující více o účincích fenoménu zvaného slapové ohýbání.
Io obíhá extrémně blízko gigantického Jupiteru. Jeho eliptická oběžná dráha jej prožene kolem plynného obra každých 42,5 hodiny. Kvůli měnící se vzdálenosti od planety se mění i intenzita jejího gravitačního působení, což způsobuje neustálé mačkání měsíce. Výsledkem je extrémní slapové ohýbání, při kterém tření vytváří obrovské množství vnitřního tepla. „Toto neustálé ohýbání doslova taví části interiéru Io,“ vysvětluje Bolton a dodává: „Kdyby měl Io globální magmatický oceán, slapové deformace by byly mnohem výraznější než u pevnějšího a převážně tuhého interiéru. Navíc by data sondy Juno odhalila, zda se pod povrchem nachází globální oceán magmatu.“
Experti z týmu kolem Juno porovnali dopplerovská data z obou průletů s pozorováními předchozích misí k Jupiteru a daty z pozemských teleskopů. Zjistili, že slapové deformace odpovídají scénáři, ve kterém na Io není mělký globální magmatický oceán. „Objev sondy Juno, že slapové síly ne vždy vytvářejí globální oceány magmatu, nás nutí přehodnotit to, co víme o nitru Io,“ říká hlavní autor studie Ryan Park, zástupce hlavního řešitele mise Juno a vedoucí skupiny dynamiky Sluneční soustavy v JPL. Dále dodává: „Tento objev má dopady i na naše chápání jiných měsíců, například Enceladu a Europy, ale také exoplanet a tzv. super-Zemí. Naše nové poznatky přinášejí příležitost znovu promyslet, co víme o vzniku a vývoji planet.“
Další zajímavá věda je přitom na obzoru. Sonda Juno provedla 24. listopadu svůj jubilejní 60. průlet nad tajemnými mraky Jupiteru. K plynnému obru se znovu přiblíží 27. prosince v 6:22 SEČ. Během průletu perijovem, kdy se Juno dostane nejblíže ke středu planety, bude sondu od vrcholků jupiterových mraků dělit pouze 3500 kilometrů. Od vstupu na oběžnou dráhu Jupiteru v roce 2016 již Juno nasbírala přes jednu miliardu kilometrů.
Přeloženo z:
https://www.nasa.gov/
Zdroje obrázků:
https://www.nasa.gov/wp-content/uploads/2024/12/1-pia26484-io-north-polar-region.png
https://www.nasa.gov/wp-content/uploads/2024/12/e2-pia09665.gif