sociální sítě

Přímé přenosy

Žádné plánované přenosy nebyly nalezeny.

krátké zprávy

Indické projekty

Indická vláda udělila souhlas s řadou velkých vesmírných projektů včetně návratu lunárního vzorku prostřednictvím mise Chandrayaan-4 a prvního modulu vesmírné stanice.

Near Space Network

NASA 17. září oznámila, že udělila kontrakt společnosti Intuitive Machines na podporu Near Space Network. Jedná se o systém, který poskytuje komunikační služby pro mise NASA na oběžné dráze Země a cislunárním prostoru.

Ariane 6

Evropští představitelé tvrdí, že změna softwaru by měla vyřešit problém, který nastal při inauguračním startu Ariane 6 v červenci s horním stupněm.

Space Network Services

Impulse Space oznámila 16. září kontrakt na zajištění dopravy na geostacionární oběžnou dráhu pro družice od francouzského startupu Space Network Services. Byla to první oznámená dohoda o geostacionární službě Impulse Space, která byla představena v srpnu.

U.S. Space Force

U.S. Space Force udělily téměř 45 milionů dolarů Rochesterskému technologickému institutu a Michiganské univerzitě, aby vedly pokročilý výzkum vesmírné energie a pohonu.

Lockheed Martin

Lockheed Martin získal kontrakt v hodnotě 297,1 milionu dolarů na vývoj mapovačů blesků pro budoucí geostacionární konstelaci Národního úřadu pro oceán a atmosféru.
Smlouva nařizuje vyvinout dva letové přístroje a zahrnuje opce na dva další.

York Space Systems

Americké vojenské družice postavené společností York Space Systems si úspěšně vyměňovaly data na oběžné dráze pomocí optických komunikačních terminálů Tesat-Spacecom.

Ursa Major

Ursa Major, společnost zabývající se raketovým pohonem se sídlem v Coloradu, získala od americké armády nové finanční prostředky ve výši 12,5 milionu dolarů na pokrok ve vývoji a výrobě raketových motorů na tuhé pohonné látky.

U-space

Francouzský startup U-space bude spolupracovat s nadnárodním dodavatelem raket MBDA na vývoji dvojice družic, které budou demonstrovat detekci, charakterizaci a zaměřování družic a jiných zařízení ve vesmíru. Družice spadají do plánů agentury DGA .

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Perseverance je za polovinou cesty

V úterý ve 21:40 SEČ mohlo pozemní středisko zodpovědné za vozítko perseverance vydat zprávu, která oznamuje, že sestava projektu Mars 2020 urazila od startu 30. července už 235,4 milionu kilometrů. Přesně stejná vzdálenost přitom v danou chvíli ještě zbývala do chvíle, než pouzdro se složeným vozítkem vletí rychlostí 19 000 km/h do atmosféry Marsu, k čemuž dojde 18. února 2021. „Nemyslím si sice, že by nám za tenhle milník někdo upekl dort, zvlášť když teď většina z nás pracuje z domova, ale je to příjemný milník. Další zastávka – kráter Jezero,“ uvedla Julie Kangas z JPL, která se na misi podílí v pozici navigátora.

Přeletová dráha mise Mars 2020 mezi Zemí a Marsem s vyznačením poloh obou planet v době startu a přistání.
Přeletová dráha mise Mars 2020 mezi Zemí a Marsem s vyznačením poloh obou planet v době startu a přistání.
Zdroj: https://www.nasa.gov/

Gravitační vliv Slunce velmi významně ovlivňuje oběžné dráhy v celé soustavě a ani přeletová dráha od Země k Marsu není výjimkou. Inženýři musí při plánování dráhy počítat i s pohybem obou planet v průběhu letu. Z těchto důvodů je přeletová dráha zahnutá a nikoliv rovná jako přímka. „Urazili jsme sice poloviční vzdálenost, kterou musíme k Marsu doletět, ale nejsme v poloviční vzdálenosti mezi oběma planetami. Pokud bychom nakreslili přímou spojnici, pak je Perseverance 42,7 milionu kilometrů od Země a Mars se nachází 28,8 milionů kilometrů před ním,“ vysvětluje Kangas.

Za tohoto stavu trvá signálu jednosměrná cesta od sondy k Zemi (případně opačným směrem) 2 minuty a 22 sekund. Celkem má cesta roveru Perseverance k Marsu měřit 470,8 milionu kilometrů a v době přistání bude rudá planeta vzdálena od Země 209 milionů kilometrů – signálu tak bude cesta trvat 11,5 minuty. Pozemní tým zatím stále kontroluje stav všech palubních systémů. 15. října byla ověřena funkce přístrojů RIMFAXMOXIE – v obou případech se zdá, že fungují správně. 19. října přišla dobrá zpráva týkající se správného fungování přístroje MEDA a 16. října zbýval už jen poslední úkol z řady zkoušek přístroje PIXL.

Pokud nějakou částí našeho roveru protéká elektřina, chceme si ověřit, že daná část funguje i po startu správně,“ říká Keith Comeaux, zástupce hlavního inženýra mise Mars 2020 a dodává: „Díky těmto kontrolám prokládaným nabíjením akumulátorů vozítka i vrtulníku, uploadováním složek a sekvencí pro povrchové činností, nebo plánováním a vykonáváním korekčních manévrů máme harmonogram naplněný až do přistání.“

Přeloženo z:
https://www.nasa.gov/

Zdroje obrázků:
https://www.nasa.gov/sites/default/files/thumbnails/image/1-pia24231-1041.jpg
https://www.nasa.gov/sites/default/files/thumbnails/image/2-pia24232-1041.jpg

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Štítky:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
27 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
Michal Andrej
Michal Andrej
3 let před

Škoda že mu vybrali názov Perseverance. Má jazdiť po Jazere, tak by sa hodil názov s lodnou tematikou, napríklad Křižník.
Ako vlastne Američania vyslovujú Jezero?

Dušan Majer
Dušan Majer
3 let před
Odpovědět  Michal Andrej

Velmi často se setkávám s výslovnosti džezerou / džezero.

Roman Vyhnánek
3 let před
Odpovědět  Michal Andrej

Hlavně, oni v naprosté většině nevědí, co slovo Jezero znamená.

pavelZ
pavelZ
3 let před

Dobrý den,

můžete mi říct jaká je pravděpodobnost, že se vozítko po cestě srazí s nějak kosmickým tělesem nebo smetím?
Děkuji.
PavelZ

Dušan Majer
Dušan Majer
3 let před
Odpovědět  pavelZ

Hezký den,
je to velmi nepravděpodobné. Zatím se to ještě nestalo. Kosmické smetí v těchto oblastech prakticky neexistuje.

pavelZ
pavelZ
3 let před
Odpovědět  Dušan Majer

Děkuji.

pavelZ

Vaclav
Vaclav
3 let před
Odpovědět  Dušan Majer

Hned první sonda k jiné planetě – Mariner 2 – dvakrát ztratila orientaci a na vině měl být v obou případech mikrometeorit. Také u ruských sond k planetám, které ztratili těsnost, příkladně Mars-5, mohl být příčinou mikrometeorit.

Dušan Majer
Dušan Majer
3 let před
Odpovědět  Vaclav

Tak mikrometeoridy jsou něco jiného. Tazatel se ptal na kosmická tělesa, což je pro mne označení větších objektů, které už mohou způsobit nějakou znatelnou škodu. A kosmické smetí (druihá část dotazu) jsou produkty lidské činnosti, takže ani v tomto případě o mikrometeoroidy nejde.

Vaclav
Vaclav
3 let před
Odpovědět  Dušan Majer

Mikrometeorit nebyl správný termín, v případě Marineru, pokud tomu tak bylo, se jednalo o větší tělísko, dostatečně hmotné aby roztočilo kosmickou loď o váze 2 metráků. Totéž platí pro ruské sondy, mikrometeorit by byl malý, stěnu sondy by neprorazil.
Pokud se týče kosmického smetí mohou se s ním sondy setkat po startu, po odhození AE krytu, kdy zpravidla vyčkávají na parkovací dráze a poté při odletu, vše probíhá v prostoru, kde je nejvíce k.smetí.

Spytihněv
Spytihněv
3 let před
Odpovědět  pavelZ

Myslím, že tohle se řešilo někdy před padesáti lety, kdy se chystal první průlet pásem planetek mezi Marsem a Jupiterem (Pioneer 10). Nevědělo se, jaká je tam hustota materiálu. A další případ je třeba Cassini, která musela během brzdného manévru proletět těsně kolem Saturna, kde jsou shodou okolností prstence. Takže byla nucena dvakrát proletět jejich rovinou, jednou z jejích mezer. Tady bylo riziko určitě reálnější. Ta mezera je sice široká 26 000 km, ale uvnitř se samozřejmě najde materiálu dost a Cassini to také mnohokrát schytala (pokud vím, tak snad až 100 000 krát), naštěstí jen od skutečné drobotiny. Ale nedalo se nic dělat, musela do toho jít po hlavě 🙂

Petr Scheirich
Petr Scheirich
3 let před
Odpovědět  pavelZ

To je dobrá otázka, ale neexistuje na ni úplně jednoduchá odpověď. Ponechám stranou slovíčkaření, co nazývat mikrometeoroidem a co už „kosmickým tělesem“. Dejme tomu, že se otázka týkala obecně meteoroidů.

Už od 60. let vyvýjí NASA tzv. Meteoroid Enginineering Model. Ten popisuje hustoty, velikostní rozdělení, rychlostní a dráhové rozdělení meteoroidů v různých částech Sluneční soustavy a jeho primární účel je zhodnocení rizika zásahu kosmických sond nějakým takovým tělískem.
Vstupními údaji pro konstrukci takového modelu jsou jednak pozorování meteorů ze Země a jednak detekce nárazů meteoroidů pomocí k tomu určených detektorů, kterými byly vybaveny některé meziplanetární sondy.

Ten model prošel dlouhým vývojem a úpravami, v poslední době mu byla věnována velká „péče“ např. i kvůli vývoji dalekohledu Jamese Webba, který bude mít nechráněné hlavní zrcadlo.

Ale k Vaší otázce. Tu lze zodpovědět pouze tehdy, pokud ji formulujeme trochu přesněji, a sice, jaká je pravděpodobnost, že se Perseverance na své cestě srazí s meteoroidem _určité hmotnosti_ (nebo velikosti). Meteoroidy ve Sluneční soustavě (i asteroidy, tedy ta větší tělesa) jsou totiž velikostně rozděleny tak, že těch největších je málo a čím jdeme k menším rozměrům, tím jejich počty přibývají. Šance na srážku s menším meteoroidem je proto samozřejmě vyšší, na druhou stranu čím menší těleso, tím menší následky taková srážka bude mít.
Položme tedy otázku např. takto: Jaká je pravděpodobnost, že se Perseverance srazí s meteoroidem o hmotnosti 1 gram nebo větším (při typické srážkové rychlosti v oblasti kolem Země či Marsu, která je okolo 20 km/s, bude mít tělísko o hmotnosti 1 g kinetickou energii srovnatelnou s osobním automobilem uhánějícím po dálnici, což už lze určitě pro sondu považovat za fatální).

Meteoroid Enginineering Model říká, že 1 metr čtvereční povrchu sondy obdrží zásah takovým tělískem řádově 10^-7krát za rok. Když to přepočítáme na celý povrch pouzdra sondy (cca 30 m čtverečních) a dobu, kterou sonda k Marsu poletí (0,6 roku), dostaneme zhruba 2*10^-6 takových srážek za celou dobu letu, jinak řečeno pravděpodobnost srážky (za celou dobu letu) je 1:500000.

Stejný výpočet můžeme provést pro meteoroidy menších velikostí, kterých je mnohem více. Pro zásah meteoroidem o hmotnosti 1 miligramu vyjde pravděpodobnost za celou dobu letu na 1:50, a pro zásah meteoroidem o hmotnosti 1 mikrogramu to vychází na 20 takových srážek za celý let.

Dušan Majer
Dušan Majer
3 let před
Odpovědět  Petr Scheirich

Díky za údaje!

pavelZ
pavelZ
3 let před
Odpovědět  Petr Scheirich

pane Scheirichu,
díky za obsáhlou a fundovanou odpověď.

Snad k žádné kolizi nedojde, přistání se podaří a budeme se tak moct těšit, co nového Perseverance objeví.

pavelZ

Vaclav
Vaclav
3 let před

Podobně jsou na tom i sonda čínská a arabská. V únoru bude u Marsu opravdu živo. K pracujícím družicím přiletí další dvě a na povrchu k pracujícímu landeru další jeden a pracujícímu roveru další dva.

trud
trud
3 let před

Možno hlúpa otázka,
prečo je zvolená takáto dlhá trajektória, viem že sa štartovalo ku koncu štartovacieho okna, ale aj tak…470mil km ? S ľudskou posádkou to vyzerá na podobne dlhú trajektóriu. Prečo sa vlastne volí takáto predĺžená ? Nikdy sa neuvažovalo s kratšou misiou? Skrátka že na Mars by sa vyštartovalo popredu…teda skôr ako sa Mars dostane do najbližšej pozície, čiže by sme mu vlastne leteli „oproti“, pobyt na Marse by bol krátky..10-30dní..a nastal by odlet na zem a vlastne by sme zem „dobiehali“. Skrátka celá misia povedzme v 1/3 obehu Marsu okolo zeme neprešlo by sa najvzdialenejším miestom obehu. Možno sa pýtam hlúposť, ale viem že niektoré sondy to na Mars stihli skôr.

Dušan Majer
Dušan Majer
3 let před
Odpovědět  trud

Všem sondám, které mají Mars jako svůj cíl, trvá přelet Země – Mars něco kolem 8 měsíců (+/- nějaký ten týden). Tato dráha (tzv. Hohmannova elipsa) se volí, jelikož je energeticky nejvýhodnější. Vámi navrhovaný postup (vlastně taková varianta čelní srážky) má zásadní problém v tom, že by byl energeticky nesmírně náročný. Především byste k Marsu přiletěl s mnohem větší rychlostí, které byste se nějak musel zbavit – buďto motorickým brzdícím manévrem (ohromná spotřeba paliva), nebo brzděním o atmosféru (extrémní tepelné namáhání). Obě varianty jsou mimo technické možnosti současné techniky.

Vaclav
Vaclav
3 let před
Odpovědět  Dušan Majer

Pokud vyjde okno na nejvhodnější polohu obou planet, dá se bez problému doletět k Marsu za čtyři měsíce. Předvedl to názorně Mariner-7. Startoval na Mysu 27.3.1969 a u Marsu byl již 5.8.1969, což jsou čtyři měsíce a pět dní, nebo přesně 127 dní.
Bylo to tím, že Mars byl v době příletu v periareu a sonda překonávala vzdálenost cca 40 mil km mezi drahami obou planet. Pokud je Mars v době příletu v apoareu, jako je tomu letos, musí sonda překonat cca 100 mil km mezi drahami obou planet a trvá to 8 měsíců.

Michal Václavík
3 let před
Odpovědět  Vaclav

Apoapsida a periapsida těles obíhajících okolo Slunce (což je případ Marsu) se nazývá perihel (perihélium) a afel (afélium). Periareum a apoareum jsou body oběžné dráhy okolo Marsu.

Vaclav
Vaclav
3 let před
Odpovědět  Michal Václavík

O.K. mám v těch názvech zmatek. Doufá, že to základní sdělení mého příspěvku, že se dá letět k Marsu 4 měsíce běžnou rychlostí bez dalších nároků.

vakuum
vakuum
3 let před
Odpovědět  trud
trud
trud
3 let před
Odpovědět  trud

Takže sa dá celá výprava skrátiť na 8-10 mesiacov, problém je „ubrzdiť“ ?. Neviem ci to chápem správne ale rýchlosť obehu zeme okolo slnka ja cca 30 km/s. Mars obieha cca 25km/s…takže už tu je rozdiel cca 5km/S plus teda rýchlosť lode smerujúcej k Marsu cca 12km/s ? Potrebujem teda spomaliť z cca 17km/s. Nie je možný dáky oblet Marsu, „gravitačný manéver“ čo by lodi pomohol spomaliť. Nestojí skrátenie misie za zložitejšie technické riešenie ? Mám pocit že palivo môžme dotankovať na obežnej dáhe a štartovať až odtiaľ. Celú misiu začať z obežnej dráhy. Samozrejme dakde bude háčik,inak by tak lietala aj NASA…ale kde…je to v tom zabrzdení a pristáti ?

vakuum
vakuum
3 let před
Odpovědět  trud

Palivo bychom teoreticky mohli doplnit na oběžné dráze, ale bylo by ho potřeba příliš mnoho. Ve vesmíru není tření, které by družici brzdilo. Co motorem urychlím, to motorem musím ubrzdit. Potřeboval bych tedy navíc palivo na brždění. To bych musel urychlovat dalším palivem. A všechno to palivo vynést ještě dalším palivem. Plus samozřejmě hmotnost nádrží. Tady je vidět, co způsobuje logaritmus v Ciolkovského rovnici. Řešení by bylo extrémně nákladné a cena nevyváží zisk z kratší doby přeletu.
Na gravitační manévr nemáme po cestě vhodné těleso, se kterým by si družice vyměnila kinetickou energii.
Dušan to sepsal dobře hned v první odpovědi. Hohmannova dráha je v současnosti optimální řešení.
Otázka vůbec není hloupá, jen odpověď není jednoduchá. Proto ji hledají všechny kosmické agentury.

Dušan Majer
Dušan Majer
3 let před
Odpovědět  vakuum

Já možná tazateli doporučím hru Kerbal Space Program. V ní se člověk snadno a rychle naučí zákonitosti nebeské mechaniky, jak fungují manévry a tak dále. Doporučuji ji všem zájemcům o proniknutí do tématu.

Radoslav Karásek
Radoslav Karásek
3 let před

A myslím, že to vobec nebola hlúpa otázka

Radoslav Karásek
Radoslav Karásek
3 let před
Odpovědět  Radoslav Karásek

patrí pánu Trúdovi

Jan Karpis
Jan Karpis
3 let před

Super článok. Ten čas letí.. 🙂
Píšem kvôli chybe v druhom odseku. Čísla majú byť asi bez desatinnej čiarky. Teda 427 a 288 mil. km.

Dušan Majer
Dušan Majer
3 let před
Odpovědět  Jan Karpis

Kdepak, takhle je to správně. Teď jsem to ještě kontroloval na webu NASA. 😉

https://kosmonautix.cz/2020/10/28/perseverance-je-za-polovinou-cesty/