sociální sítě

Přímé přenosy

Vulcan (SNC Demo-1)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

LeoLabs

Společnost LeoLabs, kalifornský provozovatel pozemních radarů pro sledování objektů na nízké oběžné dráze Země, získala v rámci amerického vojenského programu financování ve výši 4 milionů dolarů na modernizaci svého mobilního sledovacího radaru.

Skynopy

Francouzská kosmická agentura přispěla do kola financování ve výši téměř 18 milionů dolarů pro místní startup Skynopy, čímž podpořila úsilí o rychlý rozvoj sítě pozemních stanic.

NOAA

Ministerstvo obchodu zveřejnilo 30. června dlouho odkládaný dokument Kongresu s odůvodněním návrhu rozpočtu Národního úřadu pro oceán a atmosféru na fiskální rok 2026. Dokument poskytuje více podrobností o návrhu rozpočtu. Ministerstvo obchodu navrhuje ukončit financování programu koordinace vesmírného provozu.

EchoStar

Společnost EchoStar odložila možné podání návrhu na vyhlášení bankrotu, aby měla více času na jednání s regulačními orgány, které přezkoumají, zda americký družicový operátor dodržuje podmínky vázané na jeho licence.

GOSAT-GW

Japonská raketa H-2A 28. června úspěšně vynesla vědeckou družici GOSAT-GW neboli Ibuki GW, na sluneční synchronní oběžnou dráhu. Družice bude snímat skleníkové plyny a koloběh vody. Start byl posledním letem rakety H-2A.

Muon Space

Společnost Muon Space zveřejnila první tepelné infračervené snímky ze své družice FireSat Protoflight, což představuje milník pro konstelaci družice specializovanou na detekci lesních požárů. Snímky jsou pořízené pomocí šestikanálového multispektrálního infračerveného přístroje.

NASA

Úřadující správce NASA očekává, že o nové vrcholové struktuře agentury se rozhodne během několika týdnů, ale administrátor potvrzený Senátem nemusí být jmenován dříve než příští rok.

Ministerstvo letectva USA

Ministerstvo letectva USA znovu zvažuje nákup družic pro vojenskou konstelaci na nízké oběžné dráze Země a pozastavuje financování programu ve fiskálním roce 2026, zatímco zkoumá, zda by družice Starshield společnosti SpaceX mohly poskytovat stejné funkce za nižší cenu.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Kosmický hardware se dá testovat i na chodbě

Umělecká představa mise Proba-3 - dvě družice budou vzdálené zhruba 144 metrů a jedna bude dělat druhé umělé zatmění Slunce.

Nejdelší chodba na největším středisku Evropské kosmické agentury se proměnila v testovací místo, kde se ověřovaly technologie pro jednu z nejzajímavějších misí, které ESA chystá – Proba-3. Dvě družice, které budou tvořit tuto misi, se srovnají tak, aby jedna vrhala na druhou stín. Druhá družice díky tomu bude moci spatřit vnitřní vrstvy sluneční atmosféry. Jenže takto přesný let ve formaci může být realizován jen s pomocí senzorového systému, který je založen na vizuálním kontaktu. Jen tehdy se může jedna družice aktivně zaměřit na druhou. Dvojice sond v rámci mise Proba-3 poletí ve vzdálenosti 144 metrů, což umožní pozorovat korónu. Kromě toho se ale počítá s manévry pro změnu formace, které mohou změnit vzájemnou vzdálenost až na 25, či naopak na 250 metrů.

Základní kalibrační zkouška byla na vzdálenost 15 metrů.
Základní kalibrační zkouška byla na vzdálenost 15 metrů.
Zdroj: https://www.esa.int/

Testy zmíněného systému senzorů, který je pro tuto misi nezbytný, proběhly v technologickém středisku ESTEC u nizozemského Noordwijku, konkrétně ve zdejším 230 metrů dlouhém hlavním koridoru, který spojuje projekční kanceláře s technickými laboratořemi a zázemím střediska testování družic. Z koridoru byly vyklizeny exponáty a světla byla ztlumena, aby testovací verze kamer mohla sledovat simulátor druhé družice vybavený LED displeji na opačném konci chodby. „Systém vizuálních senzorů je primárním způsobem, aby obě družice zaujaly formaci a při každém oběhu ji opět obnovily,“ vysvětluje Damien Galano, projektový manažer mise Proba-3 a dodává: „Celé je to navrženo tak, aby se dvojice navzájem našla a určila svou vzájemnou pozici s přesností na pár milimetrů při vzdálenostech 20 – 250 metrů. Díky tomu pak bude moci družice autonomně provést manévr k dosažení formace. Proto ke zkouškám potřebujeme dlouhý prostor. Vnitřní prostor (jako třeba tento) je mnohem lépe kontrolovatelný než vnější prostor, kde by náš systém rušil vítr a další vlivy.

Mise Proba-3
Mise Proba-3
Zdroj: https://www.esa.int/

Mise Proba-3 má startovat v roce 2023 a obsahuje dvě družice o velikosti zhruba jednoho metru a jedna z nich bude fungovat jako stínítko (anglicky se označuje Occulter). Družice se srovnají tak, aby Stínítko zablokovalo jasný sluneční disk z pohledu druhé družice – koronografu. Vědci tak získají možnost studovat dlouhodobě vnitřní vrstvy slabé sluneční atmosféry – koróny. Tyto vrstvy jsou běžně skryté intenzivním slunečním svitem a můžeme je spatřit pouze na krátkou dobu během zatmění Slunce. „Obě družice budou na protáhlé, tedy silně eliptické dráze s dobou oběhu 19,6 hodiny,“ popisuje Raphael Rougeot, systémový inženýr mise a dodává: „Aktivní let ve formaci na celé této dráze by byl nepraktický. Místo toho budou družice ve formaci po dobu šesti hodin, kdy se budou pohybovat kolem vrcholu dráhy ve výšce 60 000 kilometrů, takzvaného apogea. Na zbytku každého oběhu pak poletí volně, což zajistí bezpečný průběh mise. Jakmile pak proletí spodní částí své oběžné dráhy, tedy perigeem, musí se vůči sobě opět srovnat.“

Testy proběhly v nejdelším koridoru v ESTEcu.
Testy proběhly v nejdelším koridoru v ESTEcu.
Zdroj: https://www.esa.int/

Sestava kamer bude na družici Stínítko hledět na družici Koronograf, kde budou pulsující LED světla. V každém rohu najdeme jedno a navíc tu bude i malý čtvercový vzor na pravé straně – díky tomu bude možné přesně určit orientaci družic a umožnit bezpečné operace ve vzájemné blízkosti. „Obě kamery se liší potřebným zorným polem. První kamera je širokoúhlá – zorné pole je široké 15° a slouží k nalezení Koronografu. Druhá kamera má užší zorné pole a právě ona umožní nezbytnou přesnost v řádu milimetrů. Další senzor pak umožní synchronizovat pořizování snímků s LED pulsy. Tato velmi přesná synchronizace – na deset miliontin sekundy – je potřebná, protože světlo z LED diod by jinak mohlo být ztraceno ve falešném odrazu Slunce od Koronografu nebo v jasné Zemi na pozadí.  Aby toho nebylo málo, tak kamery budou mít také filtr optimalizovaný pro blízké infračervené záření LED světel,“ popisuje Rougeot.

Testování na stanovišti GRALS.
Testování na stanovišti GRALS.
Zdroj: https://www.esa.int/

Zkouška sestavy kamer a LED panelu o ploše metr čtvereční obnášela testy odstupňované po 30 metrech po celé délce chodby a dosavadní analýza slibuje nadějné výsledky. Aby se nasimulovalo rozptýlené sluneční světlo, použila se specifická lampa se správnými spektrálními parametry. Pro tyto testy byly její vlastnosti pečlivě charakterizovány na Optické laboratoři, která je součástí ESTECu. Na tento test navázala zkouška zmenšené verze LED cíle, která byla připojena na pohyblivé robotické paži na kolejnicích ve středisku GRALS (Guidance Navigation and Control Rendezvous, Approach and Landing Simulator) v ESTECu. Tohle 33 metrů dlouhé stanoviště se používá k nácviku činností v těsné blízkosti, setkávání a spojování umělých kosmických objektů.

Umělé zatmění Slunce v podání Proba-3
Umělé zatmění Slunce v podání Proba-3
Zdroj: http://www.esa.int

Jonathan Grzymisch, inženýr Proba-3 zodpovědný za řízení a navigaci vysvětluje: „Robotická paže pohybovala LED cílem předem naprogramovaným způsobem, zatímco ji sledovala kamera. Z ní mohl software přístroje neustále vypočítávat relativní dynamiku trajektorie. To nám umožňuje charakterizovat chování senzoru na základě dynamických zkoušek. Oba testy proběhly úspěšně díky spolupráci se správou ESTECu a příslušnými technologickými sekcemi.“ Samotný systém vizuálních senzorů byl vyvinut na Dánské technické univerzitě. Tým tamních expertů nemohl být na místě kvůli restrikcím spojeným s pandemií Covid-19, ale podíleli se na dálku na přípravě i průběhu testů.

Přeloženo z:
https://www.esa.int/

Zdroje obrázků:
https://www.esa.int/…/Proba-3_satellites_form_artificial_eclipse.jpg
https://www.esa.int/…/23218574-2-eng-GB/Preparing_corridor_test.jpg
https://www.esa.int/…/16898131-1-eng-GB/Proba-3_s_pair_of_satellites.jpg
https://www.esa.int/…/23224728-1-eng-GB/Camera_s_eye_view_of_target.jpg
https://www.esa.int/…/23218662-2-eng-GB/Testing_in_GRALS.jpg
https://www.esa.int/…/2016/07/proba-3/16068600-1-eng-GB/Proba-3.jpg

Štítky:

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
7 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
bobr
bobr
4 let před

Díky za článek. Tohle by mne ani ve snu nenapadlo – je to úžasně elegantní.

Dan
Dan
4 let před

Také děkuji, zajímavý článek. Je známa délka primární mise a předpokládaná spotřeba PL?

Dušan Majer
Dušan Majer
4 let před
Odpověď  Dan

Základní mise má trvat dva roky a obě družice budou dohromady vážit při startu 550 kg. Hmotnost paliva jsme nenašel.

Dan
Dan
4 let před
Odpověď  Dušan Majer

Díky. Ono to asi bude na PL krapet náročnější, než dejme tomu udržení satelitu na GSO. Ale 2 roky nejsou zas tak dlouhá doba, takže to, že ty satelity jsou nějak moc lehké může být jen můj dojem.

Jan Jancura
Jan Jancura
4 let před

Díky za článek.
Detailně by mne zajímalo jak ty dráhy obou těles budou vypadat. To stínítko musí načas obíhat po vzdálenější dráze takže bude mít o něco menší rychlost než ta kamera. I když je rozdíl rychlostí malý vzhledem k výšce apogea, tak za nějaký čas by se stínítko a kamera hodně rozešly. Zřejmě zase musí stínítko se načas dostat na nějakou rychlejší dráhu, aby to zpoždění dohnalo. Fakt zajímavé.

Dušan Majer
Dušan Majer
4 let před
Odpověď  Jan Jancura

Přesně tak, proto se píše, že se ve formaci budou udržovat jen pár hodin. Jakmile už začnou odlišné dráhy obou těles vyžadovat výrazné korekce, formace bude opuštěna a obě tělesa poletí volně. Po průletu perigeem se zase srovnají do optimální formace.

pave69
pave69
4 let před

Precizní vzájemnou polohu bude udržovat Stínítko pomocí motorků na studený plyn s tahem 10 mN. Koronograf má silnější motory s jednosložkovým palivem a tahem 1 N pro obnovení vzájemné polohy za perigeem.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.