sociální sítě

Přímé přenosy

PSLV-XL (Proba-3)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

Dlouhý pochod 10

Čína provedla úspěšný test oddělení aerodynamického krytu užitečného zatížení pro raketu Dlouhý pochod 10. Test hodnotil design krytů, strukturu připojení, plán oddělení a maximální dostupnou obálku. Všechny testované parametry splňovaly jejich konstrukční požadavky.

LM 400

Společnost Lockheed Martin 19. listopadu oznámila, že její nová družicová platforma střední velikosti LM 400 bude mít svou orbitální premiéru příští rok na palubě rakety Firefly Aerospace.

Teledyne Space Imaging

Společnosti Teledyne Space Imaging a Satlantis oznámily partnerství na Space Tech Expo Europe. Jedná se o vývoj elektroniky senzoru pro pozorování Země a planetární průzkum. Satlantis vyvine Front-end Electronics (FEE) pro vyvíjený detektor CIS125 TDI Teledyne.

Iceye

Společnost Lockheed Martin začala spolupracovat s konsorciem vedeným společností Iceye, finskou společností provádějící pozorování Země, která se specializuje na družice pro radarové zobrazování. Společnosti pracují na vývoji technologií rozpoznávání cílů s umělou inteligencí pro finskou armádu.

Chance Saltzman

Generál Chance Saltzman, velitel vesmírných operací U.S. Space Force, navštívil Starbase v Boca Chica během šestého zkušebního letu rakety SH/SS. Saltzman byl pozván SpaceX, aby sledoval zkušební let a zúčastnil se dvoudenního hodnocení programu.

Space ISAC

Středisko pro sdílení a analýzu vesmírných informací (Space ISAC) otevřelo své první mezinárodní operační středisko v Austrálii. Expanze přichází v době rostoucích obav o zranitelnosti kybernetické bezpečnosti v orbitálních systémech.

Boost!

ESA 19. listopadu oznámila, že prodlužuje smlouvy se společnostmi HyImpulse, Isar Aerospace, Orbex a Rocket Factory Augsburg (RFA) v celkové hodnotě 44,22 milionů eur prostřednictvím svého programu „Boost!“, který má pomoc při integrovaném testování nosných raket

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Z Evropy ke Slunci: Vibrace

Poté, co v prosinci loňského roku úspěšně skončily tepelně-vakuové zkoušky, se tým připravující sondu Solar Orbiter začal připravovat na další testy, které se souhrnně označují jako environmentální. V komplexu IABG v německém městě Ottobrunn tak začaly vibrační zkoušky, které měly ověřit, že sonda přežije namáhání při startu. Rok 2019 začal kontrolou pozice všech přístrojů, trysek a dalších kriticky důležitých dílů na neletovém exempláři PFM (Protoflight Model), se kterým jsme se seznámili už v minulých dílech našeho seriálu. Kontrola měla ověřit tepelnou stabilitu jednotlivých prvků poté, co byly vystaveny vysokým teplotám a vakuu jako ve skutečném kosmickém prostoru. Kontroly naštěstí neodhalily žádný problém a tak bylo možné pokračovat.

Příprava na vibrační zkoušky Solar Orbiter.
Příprava na vibrační zkoušky Solar Orbiter.
Zdroj: http://sci.esa.int

Skutečná sonda poletí do vesmíru na raketě Atlas V a aby se vešla do jejího aerodynamického krytu, bude ve složené konfiguraci. Pro vibrační zkoušky, které simulují právě chvění při startu proto byl testovací exemplář příslušně upraven. Na model byly namontovány dva fotovoltaické panely – pro tuto misi byly navrženy modely, které budou schopné poskytovat dostatečné množství elektřiny a spolehlivě přečkají intenzivní žár. Inženýři stejně tak museli minimalizovat vlivy bočního světla a kumulování elektrického náboje na dílech tvořících sondu během jejího přiblížení ke Slunci.

Vědecké rameno vybavené kompletní sadou senzorů bylo také připojeno k testovací sestavě, načež proběhly další měření referenčního zarovnání. Sestava tedy byla v plně letové konfiguraci a všechny její připojené díly byly ve složeném stavu. Následovalo množství manuálních rozkládacích zkoušek, které měly ověřit funkčnost před vibračními testy. Výsledky těchto rozkládacích zkoušek následně poslouží k porovnání podobných procesů provedených po vibračních zkouškách.

Tyto předběžné testy se týkaly vědeckého ramene, obou solárních panelů a dále vysokoziskové a středněziskové antény. Během manuálních vyklápěcích testů nebyl objeven žádný moment, kdy by vyklápění jakkoliv drhlo. Jelikož mnoho z testovaných dílů není stavěno na vyklápění v pozemské gravitaci, musely přijít ke slovu specializované odlehčovací systémy. S jejich pomocí mohlo být dosaženo vyklopení prakticky bez jakéhokoliv tření, což simulovalo podmínky ve vesmíru.

Příprava na vibrační zkoušky Solar Orbiter.
Příprava na vibrační zkoušky Solar Orbiter.
Zdroj: http://sci.esa.int

Aby bylo možné vhodně nasimulovat vyklápění s minimálním namáháním testovaného dílu, bylo potřeba celou zkušební platformu naklonit tak, aby rovina každého vyklopeného dílu byla rovnoběžná se zemí. Po dokončení těchto zkoušek byly všechny zkušebně rozkládané díly sklopené zpět, načež došlo k jejich zajištění pomocí zádržných mechanismů. K jejich odpojení dojde na konci vibračních testů.

Samotná fáze mechanických vibračních zkoušek má, jak již bylo napsáno výše, potvrdit a ověřit vhodnost všech navrhovaných parametrů pro přežití startovní fáze bez ohrožení konstrukce sondy. Samotné zkoušky byly rozděleny do dvou samostatných částí. Tu první tvořila zkušební kampaň se sinusovými vibracemi, kdy byl zkušební exemplář připojen na elektromechanickou vibrační desku. Na ní se ověřovalo, jak konstrukce odolá třeba vypnutí raketového motoru, nebo bočnímu střihu větru během letu rakety. Sinusové vibrace byly aplikovány odděleně až do frekvence 100 Hz ve třech osách. Před kvalifikačním procesem a po něm proběhly ještě nízkoúrovňové zkoušky, které měly zjistit, zda se nějak změnila strukturální pevnost PFM.

Po mechanickém třesení přišel čas na akustické zkoušky, které pokryly frekvenční spektrum od necelých 100 Hz až po 8 kHz, přičemž největší excitace v akustické komoře nastala v rozmezí 100 – 500 Hz. Zkoušek proběhla celá řada, přičemž se postupně navyšovala úroveň hluku vstříc závěrečné kvalifikační úrovni, která byla pro PFM určena.

Příprava na vibrační zkoušky Solar Orbiter.
Příprava na vibrační zkoušky Solar Orbiter.
Zdroj: http://sci.esa.int

Jakmile byly dokončeny hlavní části vibračních zkoušek, mohla začít kontrola stavu elektroniky. Cílem bylo pochopitelně ověřit, že všechny elektrické systémy přečkaly testování bez problémů. Následně specialisté začali přeměřovat pozice všech prvků a výsledky byly potěšující. Ukázalo se, že stabilita je velmi vysoká, především pak u optických přístrojů určených k dálkovému průzkumu. Mohly tedy začít testy vyklápění všech pohyblivých částí – samozřejmě opět s asistencí odlehčovacích konstrukcí. Tentokrát již včetně povolení zádržných mechanismů jako kdyby docházelo ke skutečnému rozkládání antén, panelů a ramene v kosmickém prostoru. Samotné rameno má dvě rozkládací fáze, ovšem na Zemi bylo možné otestovat jen tu první. Všechny vyklopené prvky se po zkoušce vrátily do složeného stavu a došlo i k opětovnému nastavení zádržných mechanismů.

Na konci března přišel čas na sérii měření hmotnosti sondy a jejího prostorového rozložení. V rámci těchto zkoušek musela být konstrukce umístěna do zařízení, které se umí naklánět a otáčet. Tyto testy přesně změří setrvačnost, hmotnost a těžiště konstrukce, což jsou důležité údaje třeba pro systém korekčních trysek, které se budou starat o orientaci sondy v prostoru.

V dalších měsících letošního roku čekají na specialisty další zkoušky – chystají se třeba testy magnetických vlastností. Ty proběhnou v místnosti, která je tvořena především nemagnetickými materiály – třeba dřevem či hliníkem. Díky tomu bude možné měřit všechny magnetické charakteristiky konstrukce izolovaně od vnějších vlivů.

Zdroje informací:
http://sci.esa.int/

Zdroje obrázků:
http://sci.esa.int/science-e-media/img/48/Solar_Orbiter_vibration_test_prep_20190212_9.jpg
http://sci.esa.int/science-e-media/img/47/Solar_Orbiter_vibration_test_prep_20190212_8.jpg
http://sci.esa.int/science-e-media/img/43/Solar_Orbiter_vibration_test_prep_20190212_4.jpg
http://sci.esa.int/science-e-media/img/44/Solar_Orbiter_vibration_test_prep_20190212_5.jpg

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
1 Komentář
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
Pavelll
Pavelll
5 let před

Dik za dalsi zajimavy clanek o vyzkumu Slunce. Solar Orbiter spolu s Parker Solar Probe urcite posunou znalost slunecnich procesu o hodne dopredu. A taky uz je nacase zacit budovat neco jako vystrazny system pred slunecnimi erupcemi – kdy bychom nejen na Zemi ale ve vsech sektorech Slunecni soustavy (kde se doufam v neprilis vzdalene budoucnosti budou pohybovat kosmicke lode, pripadne nachazet osidlene stabice na Marsu apod) byly schopni predvidat pohyb nabitych castic a osidlene lode ci stanice mely dost casu na ochranna opatreni.

Ono neco uz urcite stavajici slunecni sondy jsou schopne predikovat a hlasit, ale nebude to asi zdaleka dokonale…

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.