Kosmické rakety jednoho typu většinou vypadají na první pohled při každém startu prakticky stejně. Málo se však ví o tom, že jejich útroby, tedy technické vybavení, prochází postupným vývojem, modernizací a úpravami. I když raketa létá spolehlivě, pracují inženýři na stovkách drobných vylepšení, které se postupně zavádí do provozu. Jedna taková na první pohled nenápadná změna se připravuje i pro evropskou raketu Vega, jejíž horní stupeň vidíte na náhledové fotce tohoto článku.
Vega je nejslabší evropská raketa, která se používá k vynášení lehkých nákladů. O její pohon se starají tři stupně na tuhé palivo, nad kterými sedí horní stupeň AVUM. Zatímco motory na tuhé palivo se nedají během letu řídit, stupeň AVUM spaluje směs kapalného paliva (nesymetrický dimetylhydrazin a oxid dusičitý). Díky tomu je schopen přesně korigovat generovaný tah, takže se využívá k dosažení finální oběžné dráhy.
Palivo pro stupeň AVUM se skladuje ve čtyřech válcovitých nádržích zakončený kupolemi, přičemž každá z nich má objem 142 litrů. Tyto nádrže jsou vyrobeny z titanu, což je kov, který se kromě nízké hustoty vyznačuje i velkou pevností a odolností vůči vnějším vlivům. Jenže právě to může být někdy na škodu – to, že je tento kov velmi odolný, znamená, že nádrže z něj vyrobené při vstupu do atmosféry neshoří.
To se na první pohled nemusí zdát jako velký problém, ovšem před několika týdny dopadla neshořelá nádrž rakety Vega do Indie. Sice se nikomu nic nestalo, ale je to opravdu velké varování, že tento design není úplně ideální. Odborníci z ESA naštěstí už delší dobu pracují na nových nádržích.
Pro někoho bude znít paradoxně, že nový typ má být méně odolný, ale je potřeba dodat, že tato nižší odolnost se týká teploty. Zatímco současné nádrže vznikají z titanu, nově se má používat hliník. Rozdíl mezi teplotou tání těchto dvou prvků je téměř 1000°C (1667,85°C u titanu oproti 660,32°C u hliníku). Hliníkové nádrže tak při vstupu do atmosféry shoří mnohem rychleji.
Při návrzích jednotlivých dílů se samozřejmě musí stanovit i jejich výrobní proces. Ten je závislý na mnoha faktorech, mezi kterými je i použitý materiál. Různé kovy mají jiné mechanické vlastnosti a vyhovují jim jiné výrobní procesy. To samé se týká i nádrží pro raketu Vega.
Zatímco současné nádrže se vyrábí běžným obloukovým svařováním netavící se elektrodou v ochranné atmosféře inertního plynu (metoda TIG), nové hliníkové nádrže využijí inovativní postup označovaní jako třecí svařování s promíšením (friction stir welding). Pravidelným čtenářům našeho webu není potřeba tuto metodu dlouze představovat, jelikož se používá třeba i při výrobě nádrží pro americkou raketu SLS, nebo pro přetlakovou kabinu lodi Orion.
Při tomto procesu (který byl patentován v roce 1991) jsou dva spojované díly pevně upnuté, aby se při svařování nepohnuly. O vlastní spojení se stará rotační nástroj s kolíkem, který se zanoří do spáry mezi oběma díly. Teplo vzniklé tímto třením se postará o změknutí okolního materiálu, který je následně rotačním pohybem promíšen s materiálem z druhého svařovaného dílu. Jak se kolík posouvá spárou mezi oběma díly, zanechává za sebou již hotový svar.
Výhodou metody, jejíž animaci najdete pod tímto odstavcem je perfektní propojení obou svařovaných povrchů, přičemž svar je tvořen stejným materiálem, z jakého jsou vyrobeny svařované díly. To má pochopitelně pozitivní vliv na kvalitu svaru a mechanickou odolnost celého dílu.
Informace o přípravě nového typu nádrží jsme získali v Technologickém středisku Evropské kosmické agentury (ESTEC) na dni otevřených dveří. Součástí akce jsou totiž i stánky, na kterých odborníci z jednotlivých oborů prezentují to, na čem pracují. I nás zajímala odpověď na otázku, kdy by mohlo dojít k nasazení této nové technologie do reálného procesu – první část odpovědi byla diplomatická – až budou hotové všechny testy a všichni si budou jistí, že je nový návrh bezpečný ve všech směrech. Nakonec však přišel i konkrétní časový horizont – hliníkové nádrže by mohly začít na raketách Vega létat zhruba za tři až pět let. Velice nás proto těší, že můžeme našim čtenářům zprostředkovat informace o tomto zajímavém pokroku.
Zdroje obrázků:
http://www.esa.int/…/vega_s_upper_stage/9261315-5-eng-GB/Vega_s_upper_stage.jpg
Fotografie Ondřeje Šamárka
Hmmm. 3 – let zavedení nové nádrže? Ten nepoměr k tempu vývoje a aplikace u SpaceX (a nejen u nich) je neskutečný… je to socialismem, nebo tím, že je nic netlačí (takže vlastně taky tím prvním), ultraopatrností, nebo čím?
3-5
Třeba to je z části i tím, že Vega toho moc nenalétá a mají ty “staré” nádrže nadělané. Spíš teda doufám, že je to tím, protože jinak bude tímhle tempem pokroku Ariane 6 tak v roce 2040 🙂
Tak ono to bude dáno spíš výrobním cyklem rakety. Nebylo řečeno kolik těch původních nádrží mají dodavatelé skladem. Nejde o žádnou opravu kritické chyby, neomezuje to funkci rakety.
A ve finálne by to mohlo I trošku slevnit raketu. Přeci jen, cenově je titan jinde než hliník. Neříkám že o moc, ale zkrátka, troška ke trošce a našetřili sme si na Národní divadlo.
Jo, korunka ke korunce – a máme dvě korunky. Asi tak. Národ se skládal a skládal, po korunce až… většinu doplatil sám císař Franz Josef II.
Takže, cena za kg: Titan – 3,77USD; hlinik 2,14USD. Predpokladám, že nejde o čiste hlinikovú nádrž ale skôr o nejakú zliatinu. Rozdiel cien nie je až tak veľký, ale na druhej strane, možno že práve opracovanie hliníka a titánu je rozdielne a to prinesie rozdiel vo výslednej cene a zjednodušení procesu výroby.
Skôr ma zaujal rozdiel hmotností: ak hustota titanu je 4540kg/m3 a hliník 2700kg/m3.
Vie sa odhadnúť nárast nosnosti rakety?
Otázka, prečo sa nepokúsia nahradiť to kompozitným materiálom?
To, že má hliník nižší hustotu neznamená, že ty nádrže budou nutně lehčí. (to by letadla měla dodnes dřevěný drak) Co se týká jiných materiálových vlastností, tak titan vede. Ale na obrábění je mnohem jednodušší ten hliník.
Ta cena za titan 3,77 USD asi nebude pravda. Vždyť tolik vám dají ve sběrně za kilo měděných drátů.
Titan jako materiál je opravdu celkem levný. Drahé je z něj vyrobit něco podle svých představ.
Tak jaktože je všude na netu tak extrémně drahý?
http://simzac.cz/titanove-plechy/29-titanovy-plech-2-mm-grade-5.html#/13-delka_plechu-150_mm/11-sirka_plechu-400_mm
Súhlas. Materiál nebude drahý, ale opracovanie áno. Možno aj preto je už cena plechov tak vysoká.
cenu som zobral z: http://www.infomine.com/investment/metal-prices/ferro-titanium/
„Tak jaktože je všude na netu tak extrémně drahý?“
Protože parametricky stabilní plech bude ten „materiál vyrobený podle vašich představ“? 😉
gg: Žádné osobní představy nebo parametry. Seká se to jak Baťa cvičky. Maximálně si vyberete Grade 1, Grade 2, Grade 5.
http://simzac.cz/9-titanove-plechy
nebo třeba jatagan tečka eu/titan/
Všude draho.
Tak neviem. V súčasnosti je cena titanu dosť nízka v porovnaní s poslednými rokmi:
https://agmetalminer.com/metal-prices/titanium/
To však nič nemení na fakte, že cena nespracovaného kovu môže byť relatívne nízka.
BlackSheep: Tak ta aktuální cena 60 dolarů za kilogram (27 dolarů za libru) už zní o dost reálněji.
Asi je to zlá interpretácia, ale údaje som našiel na webe, nemám to zo svojej hlavy.
Možno niekto blízky metalurgii nám vie dať odpovede na všetky otázky.
Mňa reálne zaujíma hmotnostný zisk pri použití Al alebo kompozitu ako materiálu samotnej nádrže.
Bavíme sa o nízkotonážnej rakete, kde každý kg je zaujímavým ziskom.
„gg: Žádné osobní představy nebo parametry. “
Takže 2mm plech není osobní představa? OK, tak já vám pošlu pytel prášku, s tím si jistě poradíte sám. 😉
Maro> nevím, do tohoto skutečně nedělám, ale mám za to, že jednotková cena suroviny bude nižší, než polotovaru. BlackSheepOI2 uvedl cenu suroviny, proto to vypadá tak levně.
Vďaka, tak nejako to vychádza aj mne, ale snáď to vie niekto lepšie popísať.
V minulosti sa nahrádzali titanové časti na lietadlách oceľou resp. hliníkom a objavom boli kompozity. Ak dobre pamätám články v L+K, dôvodom bola náročnosť výroby, obtiažnosť spracovania a teda v konečnom dôsledku cena použitia titanu.
Nevíte někdo, jak se zadělává ta díra po kolíku na konci svařování? A jak se to dělá při uzavírání nádrže, když by na zadní straně svaru měl být protikus, aby byl svar rovný (na videu Backing bar)?
Mám dojem že diera sa klasicky zavarí.
ak niekto hľadá informácie ako ja:
http://www.spaceflight101.net/vega-info.html