ExoMars
Společnost Airbus Defence and Space postaví přistávací platformu pro rover ExoMars Evropské vesmírné agentury. Start mise je plánován na rok 2028.
sociální sítě
Přímé přenosy
krátké zprávy
Společnost Airbus Defence and Space postaví přistávací platformu pro rover ExoMars Evropské vesmírné agentury. Start mise je plánován na rok 2028.
Čína dňa 29.3.2025 o 17:05 hod. SEČ úspešne vypustila experimentálnu družicu TJS-16 pomocou rakety CZ-7A z kozmodrómu WSLC.
Evropa uzavřela smlouvu se společností Thales Alenia Space na vývoj digitálního dvojčete zemědělských systémů, které kombinují satelitní data a modelování plodin na podporu udržitelných a klimaticky odolných zemědělských postupů na celém kontinentu.
Technologická a konzultační firma Booz Allen Hamilton představila koncept mega-konstelace družic navržených tak, aby naplnily vizi vládní administrativy na komplexní protiraketový obranný štít na ochranu Spojených států, tzv. Golden Dome.
V prohlášení z 26. března NASA uvedla, že modul Pressurized Cargo Module pro Cygnus, který měl letět s misí NG-22 k ISS, je poškozený a nebude použit pro tuto misi, která měla odstartovat v červnu.
Velitelství Space Systems oznámilo 27. března, že Rocket Lab a Stoke Space se připojí k Blue Origin, SpaceX a United Launch Alliance (ULA) v programu National Security Space Launch (NSSL) Phase 3 Lane 1.
Bílý dům předložil Senátu 24. března nominaci Grega Autryho na pozici finančního ředitele agentury NASA. Autry byl nominován na pozici CFO NASA v červenci 2020, několik měsíců po odchodu Jeffa DeWita. Senát jeho nominaci tehdy neschválil.
Společnost Gravitics oznámila 26. března, že obdržela navýšení strategického financování, neboli STRATFI, ocenění od SpaceWERX, komerční složky Space Force, v hodnotě až 60 milionů dolarů.
Velitelství vesmírných systémů Space Forces oznámilo 26. března, že dokončilo dlouho očekávanou certifikaci rakety Vulcan po analýze dat ze dvou certifikačních startů rakety v lednu a říjnu 2024.
Naše podcasty
Doporučujeme
Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.
Poděkování
Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!
V minulém dílu našeho letního seriálu jsme se věnovali programu Apollo, od jehož největšího úspěchu letos slavíme právě 55 let. Připomněli jsme si proto nejvýznamnější vědecké objevy projektu Apollo. Dnes už je ale čas se podívat jinam, totiž na nejdůležitější fyzikální objevy za nimiž stály kosmické observatoře. Za již téměř sedmdesátiletou historii kosmonautiky uskutečnily kosmické teleskopy a sondy již opravdu značné množství zajímavých a důležitých objevů, které posunuly fyziku o značný kus dopředu. Nebylo tedy lehké vybrat právě pět nejzásadnějších bodů. Na druhou stranu, některé ze zmíněných objevů byly natolik přelomové, že jsem je zase nemohl vynechat, i když bych třeba i chtěl. Výběr tedy nakonec nebyl tak těžký, jak jsem si původně myslel, že bude. Pojďte se s ním seznámit.
Dnešní díl našeho seriálu S Webbem za hlubokým nebem bude dost netradiční. Jste zřejmě zvyklí na to, že si vždy probereme nejnovější objevy y vydařené dechberoucí fotografie. Někdy všechny dohromady, výjimečně pak jde o díl s užším zaměřením, jako byl nedávný speciál, který se týkal nádherných snímků blízkých spirálních galaxií. Protože si však nyní připomínáme výročí zveřejnění prvních snímků Webbova teleskopu, rozhodl jsem se, že by nový díl měl být poněkud netradiční. Místo obvyklého rozboru nových dat se podíváme na několik důležitých vědeckých projektů, které s Webbovým teleskopem pracují. A protože už mě všichni dobře znáte, tušíte, že půjde o projekty zaměřené na kosmologii.
Astrofyziky potěšila zpráva z 14. června, že počet potvrzených extrasolárních planet překročil 6 000. Není přitom tak dávno doba, kdy si mnozí mysleli, že žádnou planetu mimo Sluneční soustavu nikdy znát nebudeme. Potom šly ovšem věci ráz na ráz, v 90. letech došlo k objevu prvních exoplanet a později začal jejich počet rychle narůstat. Můžete samozřejmě argumentovat, že překročení 6000 není nic zas tak výjimečného. A částečně byste měli pravdu, vždyť kdybychom neměli soustavu desítkovou, ale třeba dvojkovou, šedesátkovou či hexadecimální (šestnáctkovou), slavili bychom jako kulaté úplně jiné hodnoty. Přesto se pokusím dnes ukázat, že určitý význam dosažení této hodnoty skutečně má.
Pokud jste v poslední době sledovali vývoj kolem Vesmírného teleskopu Jamese Webba, mohli jste si všimnout, že zajímavých výsledků byla celá řada. A protože už uplynula dostatečně dlouhá doba od našeho posledního setkání nad tímto tématem, je na čase se znovu podívat na výsledky tohoto úžasného kosmického přístroje. Čeká nás cesta z nejvzdálenějších končin vesmíru, až po relativně blízké okolí naší Sluneční soustavy. Aby se však článek udržel v aspoň trochu rozumném rozsahu, musel jsem chtě nechtě, dva původně zamýšlené body vynechat. Pokud patříte mezi jejich fanoušky a mrzí vás to, že se na ně nedostalo, nezbývá než se omluvit. Někdo jiný by na mém místě patrně vybíral jinak.
V předloňském roce astronomové oznámili, že počet objevených planet mimo Sluneční soustavu přesáhl pět tisíc. Přitom není zase až tak dávno doba, kdy nebyly známy žádné exoplanety. O jiných světech u dalších hvězd, kde možná existuje život, sice přemýšleli filosofové, učenci a vědci dlouhá staletí, nicméně většinu historie byly podobné spekulace spíše okrajovou záležitostí a na jejich autory bylo nahlíženo s krajním podezřením. Teprve v letech 1992 a 1995 učinili odborníci první dva objevy extrasolárních planet. A nešlo o objevy ledajaké. Objevená tělesa v podstatě úplně převrátila naše smýšlení o vzniku a vývoji planetárních soustav. Než se však k těmto pozoruhodným výsledkům dostaneme, řekněme si nejprve něco o době, kdy přítomnost planet u jiných Sluncí nebyla ničím víc než bláznivou ideou několika snílků.
Rychlé rádiové záblesky označované mnohdy i v češtině anglickým termínem Fast Radio Bursts (FRB) jsou astronomické úkazy při nichž se uvolní obrovské množství energie v rádiové oblasti spektra, což pak pozorujeme ve formě záblesků rádiového záření. Známe je jen velmi krátce, ani ne dvacet let, avšak dokázali jsme jich detekovat již značné množství. Přestože jsme o rychlých rádiových záblescích zjistili již leccos zajímavého, stále skrývají mnohá tajemství. Dosud totiž nevíme přesně jaké objekty jsou jejich původci a jakými mechanismy vznikají. Jde o jeden ze zásadních nevyřešených problémů dnešní astrofyziky. Na rozdíl od mnoha jiných otázek, u nichž si na odpověď budeme muset počkat ještě desítky let, vysvětlení původu FRB je doslova na spadnutí. Jde totiž o jeden z nejvíce zkoumaných jevů současnosti a zvláště v poslední době jsme získali některé dosti zásadní informace.
Gravitační čočky mnohdy plní stránky, nejen, vědeckých časopisů, protože dokáží vytvářet mimořádně krásné a pohledné obrazy. Ovšem jejich význam nespočívá jen ve fotografiích, které daňovým poplatníkům dokáží ospravedlnit značné výdaje vložené do astronomických observatoří, ale mají i mimořádný přínos pro astronomii a fyziku. Díky nim dokážeme vidět velmi vzdálené galaxie, či dokonce jednotlivé hvězdy, které bychom jinak vidět nemohli. Dovolují nám třeba také velmi precizně měřit hmotnost čočkujících objektů a zakřivení prostoročasu v jejich okolí, čímž získáme množství detailů o rozložení temné hmoty ve vesmíru. A v neposlední řadě nám jistý typ gravitačních čoček umožňuje hledat vzdálené exoplanety či bludné planety, jež bychom jinak nikdy nemohli vidět. Gravitační čočky jsme zde již v mnoha článcích nakousli, myslím, že tedy nazrál čas se na ně podívat podrobně v samostatném příspěvku.
Lidé od nepaměti studovali vesmír a objekty v něm obsažené pomocí viditelného světla. V průběhu 19. století se však zjistilo, že viditelné světlo je jen jednou ze součástí elektromagnetického spektra. Jednotlivé dnes známe složky byly objeveny do počátku 20. století. Rádiové záření fyzikové objevili koncem 19. století a jen velmi krátce na to se objevily názory, že by mohly tento typ záření generovat i astronomické objekty. Pravý původ radioastronomie však musíme hledat až ve 30. letech. Od té doby se tento obor stal základním nástrojem astronomů. Proto je myslím zcela na místě dnes pohovořit o radioastronomii poněkud podrobněji. A pokud si myslíte, že tento obor jako jediný nemá zastoupení v kosmickém výzkumu, v tomto textu si ukážeme, že to není tak docela pravda.
Velký třesk jako pojem má ve skutečnosti dva různé významy. V běžném jazyce, popřípadě v některých oborech fyziky, jej chápeme jako jeden přesný okamžik, kdy vznikl vesmír a tím i prostor a čas. Všechno dalšího, co se poté v kosmu odehrávalo bylo tedy nějakou dobu po Velkém třesku. V kosmologii ovšem chápeme tento termín dosti odlišně. Míníme jím celou prvotní fázi existence vesmíru a to od jeho samotného vzniku až po dobu, kdy se dnešní reliktní záření oddělilo od látky, tedy do času 380 000 let po počátku. V našem pojetí tedy Velký třesk nebyl jediný kratičký okamžik, ale trval 380 000 roků. Děje, které se v této epoše odehrály byly natolik zásadní, že s trochou nadsázky můžeme říci, že tehdy vesmír zažíval skutečný život, zatímco dnes už je to jen jakési dožívání. Proto se nyní podíváme na události, které se v té době odehrály podíváme detailněji.
Sotva uplynul týden a jsme tu s dalším dílem našeho seriálu. Možná se divíte, že tak brzy, ale vězte, že jsem oba díly připravoval společně. Kromě mnoha jiných zajímavých výsledků Vesmírného dalekohledu Jamese Webba byla totiž nedávno zveřejněna série snímků, které zachycuje blízké spirální galaxie. Jedná se o galaxie všech možných typů, tvarů i velikostí vzdálené od 80 do 20 milionů světelných let. Tyto byly zobrazeny v rámci jediného pozorovacího programu, proto ostatně vědci uveřejnili všechny obrázky najednou. A protože jsou spirální galaxie jedny z nejkrásnějších objektů ve vesmíru, jak ostatně dokazuje i zmíněná galerie, rozhodl jsem se, že se na ně podíváme v tomto speciálním díle našeho seriálu.
Na webu Kosmonautix.cz používáme soubory cookies k zajištění správného fungování našich stránek, ke shromažďování anonymních statistických dat a pro lepší uživatelský zážitek. Více informací najdete zde.
Děkujeme za registraci!
Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.
Děkujeme za registraci!
Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.