Archiv rubriky ‘Technologie’

Vesmírná technika: Evropské chladničky/mrazáky MELFI na ISS

VT_2022_21

Biologické experimenty prováděné na ISS, ale i odebrané lékařské vzorky musí být uchovávány za nízkých teplot, aby nedošlo k jejich znehodnocení. Jak to ale udělat, když se tyto citlivé materiály mají na Zemi vracet až po nějaké době? Ke slovu přichází speciální chladicí/mrazicí boxy, ve kterých je možné tyto vzorky bezpečně uskladnit. Na ISS bychom našli takových zařízení několik, ale bezkonkurenčně největší objem nabízí evropské chladničky/mrazáky MELFI.

Vesmírná technika: Evropské inkubátory KUBIK na ISS

VT_2022_20

Na Mezinárodní kosmické stanici ISS probíhá v každém okamžiku celá řada vědeckých experimentů. Ty by se ale nemohly uskutečnit bez nejrůznějších zařízení, ve kterých mohou experimenty probíhat. Jedním z důležitých systémů, které umožňují výzkum, jsou všestranné evropské inkubátory KUBIK, které slouží především biologickému výzkumu. Ačkoliv disponují pouze jednoduchou elektronikou, nabízí flexibilní vnitřní uspořádání, ve kterém nechybí ani možnost využití malé odstředivky.

Vesmírná technika: Provoz marsovského vrtulníku Ingenuity

VT_2022_19

Marsovský vrtulník Ingenuity se 19. dubna roku 2021 stal prvním vrtulovým strojem, který vzlétl na jiné planetě, než je Země. Během své dosavadní mise zaznamenal 28 letů, při kterých dokázal překonat i ty nejoptimističtější odhady, a několikrát také posunul vlastní rekordy. V současné době přichází do jeho oblasti marsovská zima, a tak jsou jeho lety dočasně přerušeny.

NASA věří iontovému pohonu u malých družic

Cesta k Měsíci, Marsu a jednou i někam dál bude vyžadovat flotilu lodí, sond a dalších strojů různých velikostí a tvarů, mezi kterými najdeme masivní rakety s tahem tisíců tun až po malé sondy s iontovým pohonem, které by se Vám vešly do dlaně. Desítky let se inovátoři na Glennově středisku snaží vyvíjet výkonné systémy tzv. elektrického pohonu. NASA tento výraz v posledních letech používá pro iontové pohony. Výraz elektrický pohon totiž může být v souvislosti s kosmonautikou pro leckoho matoucí. Tyto systémy využívají energii ze Slunce, aby ionizovaly inertní plyny, které jsou velkou rychlostí vyvrhovány pryč, což vytváří mimořádně efektivní pohon. Vyšší efektivita využívání pohonných látek znamená, že pohon vyžaduje méně pohonného média, což snižuje náklady na start. Současně dává inženýrům možnost už při návrhu snížit celkovou hmotnost sondy, případně může hmotnost zůstat stejná – pouze se na palubu dostane více užitečné zátěže – od technologických demonstrátorů po výkonné vědecké přístroje.

Vesmírná technika: Elektronika marsovského vrtulníku Ingenuity

VT_2022_18

Na elektronické vybavení marsovského vrtulníku Ingenuity byly při stavbě kladeny protichůdné nároky. Na jedné straně tu byl omezený rozpočet a také šibeniční termíny. Na druhé straně však vrtulník potřeboval systémy, které odolají kosmickému záření a poradí si také s nepříjemnými výkyvy teplot. Vše se nakonec podařilo vyřešit chytrou kombinací komerčně dostupných dílů a součástek určených pro leteckou a vojenskou techniku. Výsledkem je až nečekaně odolný stroj, který nevídaným způsobem překonává počáteční předpoklady.

Vesmírná technika: Konstrukce marsovského vrtulníku Ingenuity

VT_2022_17

To, že si marsovský vrtulník Ingenuity vede tak dobře, je určitě způsobeno tím, že inženýři při jeho návrhu a stavbě využili chytré postupy a řešení. Dokázali tak připravit odolný stroj, který výrazně překonává původní očekávání. Do okamžiku vydání tohoto dílu už v řídké marsovské atmosféře provedl 27 letů.

Vesmírná technika: Cesta k marsovskému vrtulníku Ingenuity

VT_2022_16

Největší překážka, která komplikuje provoz vrtulových strojů v atmosféře Marsu, se týká nízkého tlaku zdejší atmosféry. To má vliv na hustotu plynů, která by byla pro vrtulníky běžně používané na Zemi až příliš nízká. Experti z několika středisek NASA proto hledali způsob, jak tuto výzvu překonat. Výsledkem jejich snažení je vrtulník Ingenuity, který velmi výrazně překonal prvotní očekávání.

ESA zmapuje radiační zátěž letu k Měsíci

Malé, ale šikovné budou evropské senzory, které se na palubě první americké mise Artemis svezou k Měsíci. Tady budou mapovat radiační prostředí po dobu celé cesty. Konkrétně se jedná o pět špičkových zařízení, z nichž každé má rozměry srovnatelné s balíčkem hracích karet. Všechny tyto přístroje budou umístěny uvnitř návratové kabiny lodi Orion a připojeny k panelům jejích stěn na různých místech. Díky tomuto experimentu bude možné zaznamenávat údaje o radiačním prostředí v útrobách lodi po celou dobu a navíc s pomocí několika senzorů. Systém EADs (ESA Active Dosimeters) umožní vědcům co možná nejpřesnější pohled na změny kosmického záření v průběhu mise, ale také na celkové dávky, které bezpilotní mise Artemis I dostane.

Vesmírná technika: Návrhy letadel pro Mars

VT_2022_15

Létání v atmosféře Marsu je dnes známé díky americkému vrtulníku Ingenuity, který si vede nad očekávání dobře. Než se však v našem seriálu dostaneme k jeho popisu, rádi bychom Vám představili historii dříve plánovaných a nakonec nerealizovaných projektů, které měly větší či menší šanci stát se prvním letadlem v atmosféře Marsu. První úvahy jsou staré již půl století a tato myšlenka podněcovala fantazii inženýrů z USA, Sovětského svazu, Japonska i Evropy.

Nafukovací štít čekají zkoušky

LOFTID: experimentální velký nafukovací tepelný štít

Technologický demonstrátor LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator) by měl na podzim letošního roku startovat společně s družicí JPSS-2, kterou připravuje agentura NOAA. Poté co se LOFTID sveze jakožto sekundární náklad na nosné raketě Atlas V od firmy United Launch Alliance, dojde k jeho oddělení, interní systémy zajistí nafouknutí flexibilních částí a technologický demonstrátor zamíří z nízké oběžné dráhy zpět do zemské atmosféry. Jeho úkolem je totiž prokázat, jak dokáže nafukovací tepelný štít zpomalit vracející se těleso a také, jak jej dokáže ochránit před žárem při průchodu atmosférou.