NASA
NASA jmenovala Amita Kshatriyu novým zástupcem administrátora NASA. Amit Kshatriya před nástupem do nové funkce vedl kancelář programu Moon to Mars.
sociální sítě
Přímé přenosy
krátké zprávy
NASA jmenovala Amita Kshatriyu novým zástupcem administrátora NASA. Amit Kshatriya před nástupem do nové funkce vedl kancelář programu Moon to Mars.
Projekt Kuiper společnosti Amazon uzavřel svou první leteckou dohodu. Partnerství s JetBlue má od roku 2027 zpřístupnit přibližně 75 letadlům širokopásmové připojení k družicím na nízké oběžné dráze Země.
Více než 80 důstojníků amerických Vesmírných sil minulý týden jako první absolvovalo nový roční kurz pro výcvik důstojníků. Tento program zahrnuje seznamování s vesmírnými operacemi, kybernetickou válkou a zpravodajstvím.
Spacedock, startup sídlící v Silicon Valley, dříve známý jako Orbital Outpost X , 20. srpna oznámil plány na demonstraci univerzálního připojovacího zařízení pro vesmírné systémy při misi, která by měla letět v roce 2026.
Společnost AscendArc se sídlem v Portlandu v Oregonu prodala svůj první malou geostacionární komunikační družici společnosti KT Sat, vlajkovému jihokorejskému operátorovi.
Společnost True Anomaly, startup zaměřený na vesmírné technologie a zaměřený na obranu se sídlem v Coloradu, najal Sarah Walterovou, výkonnou ředitelku pro družicový průmysl, na pozici provozní ředitelky.
Bílý dům 2. září oznámil dlouho očekávané přemístění velitelství amerického vesmírného velitelství z Colorado Springs v Coloradu do Huntsville v Alabamě, čímž zrušil rozhodnutí předchozího prezidenta Bidena z roku 2023 ponechat velitelství v Coloradu.
Společnosti General Atomics a Kepler Communications demonstrovaly spojení dvoumotorového letounu De Havilland Canada DHC-6-300 a družice. V demonstraci navázal optický komunikační terminál společnosti General Atomics namontovaný na letadle komunikaci s optickým terminálem Tesat na komunikační družici Kepler.
Společnost Muon Space se po navýšení financování o 90 milionů dolarů snaží rozšířit výrobní kapacity a zaměřit se na rostoucí poptávku po stále výkonnějších družicích v hmotnostním rozmezí 100–500+ kilogramů.
Naše podcasty
Doporučujeme
Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.
Poděkování
Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!
Fascinující svět velmi nízkých teplot jsme si na našem webu představili již ve dvou článcích. Žádný ale nebyl primárně zaměřen na nesmírně zajímavý izotop helia, kterým je helium-4. To je sice hodno pozornosti i za normálních podmínek, avšak teprve při nízkých teplotách kolem 2,5 K se projeví ty nejvíce udivující vlastnosti, které z helia-4 činí jeden z nejpodivuhodnějších stavů hmoty na světě. S heliem-4 se navíc pojí jeden nevyřešený fyzikální problém, který zkoumala i posádka jednoho z letů amerických raketoplánů. Nejprve si však o heliu a jeho vlastnostech řekněme nějaké základní údaje.
Jelikož při prvních misích Apollo nikdo netušil, zda s sebou astronauti z Měsíce nevědomky nepřivezli nějakou skrytou hrozbu, musela být velká pozornost věnována způsobu, jak zacházet s astronauty po návratu z Měsíce. Výsledkem byl proces, který měl co nejvíce omezit kontakt nechráněné posádky a přivezeného nákladu s pozemským prostředím. Součástí prvních misí proto byla i karanténa, ve které posádky strávily několik dní. I tady ale platilo, že čím více jsme se o Měsíci v průběhu jednotlivých misí dozvídali, tím více se zprvu striktní pravidla uvolňovala.
Vážení čtenáři, dámy a pánové. V prosinci loňského roku odstartoval do kosmického prostoru na raketě Ariane 5 vesmírný dalekohled Jamese Webba, dlouho vyvíjený a toužebně očekávaný infračervený teleskop, vlajková loď astronomie tohoto desetiletí. Po úspěšném přeletu do okolí Lagrangeova bodu L2 soustavy Slunce – Země, rozložení dalekohledu a kalibraci přístrojů začala konečně vědecká pozorování. Jejich první výsledky jsme si zde již představili v článcích z 12., respektive 13. července. Velmi si vážíme toho, že Váš zájem o tento špičkový kus techniky a jeho objevy neustal. Z toho důvodu, a také kvůli tomu, že lze důvodně očekávat další významné objevy posunující o velký kus naše současné poznání, jsme se rozhodli přistoupit k seriálu, který bude v pravidelných intervalech pokrývat nejzajímavější vědecké dění kolem Webbova dalekohledu.
V dubnu jsme vydali článek, který se věnoval vývoji svinovacích fotovoltaických panelů. V podobném duchu se ponese i dnešní článek, ve kterém si posvítíme na jinou zajímavou technologii a její příběh. Marsovský kráter Jezero je plný nebezpečí – od kameny posetých svahů až po malé krátery. To z něj činí složité místo pro přistání. Přesto si sem v rámci mise Mars 2020 NASA dovolila poslat svůj rover Perseverance. Jeho přistání se nakonec navzdory složitým podmínkám podařilo a nezpochybnitelný podíl na tom měla i vylepšená navigační technologie. A právě té se budeme dnes věnovat.
Všechny posádky programu Apollo, které se dostaly na Měsíc, musely čelit jednomu nepříjemnému fenoménu. Lunární prach totiž ulpíval na všech površích včetně skafandrů. Přímý styk posádky s touto substancí, která v té době ještě nebyla plně prozkoumána, nešlo vyloučit. Hledala se proto řešení, jak se prachu co nejlépe zbavit. Do akce se proto dostaly jak jednoduché metody jako je třepání, nebo ometací štěteček, ale i vysavač. Hodně práce odvedly i systémy lunárního modulu pro revitalizaci atmosféry.
V minulých dílech našeho seriálu jsme se věnovali nástrojům pro odběr vzorků, které používali astronauti při programu Apollo. Jenže co se dělo se vzorky poté, co byly odebrány? Z odběrného nářadí byly přesunuty do speciálních vaků, které se následně přemístily do kabiny lunárního landeru, aby je astronauti odvezli na Zemi. Stejně jako v případě nástrojů můžeme i u těchto vaků říct, že se v průběhu programu Apollo vyvíjely. Inženýři totiž reagovali na praktické zkušenosti astronautů z lunárního povrchu, kteří tyto sáčky používali.
Astronauti při lunárním programu Apollo pochopitelně neodebírali pouze povrchové vzorky, kterým jsme se věnovali v minulých dílech našeho pořadu. Aby mohli vědci důkladně prostudovat Měsíc, bylo potřeba získat i vzorky, které se nachází pod povrchem. Za tímto účelem byly některé posádky vybaveny dokonce i vrtačkou s až třímetrovým vrtákem. Ale i nástroje pro odběr podpovrchových vzorků, které vyžadovaly čistě lidskou sílu, udělaly hodně užitečné práce.
Kdo by občas nezatoužil podívat se do vzdálených světů, k jiným hvězdám a jejich planetám. Sen mnoha vizionářů a spisovatelů sci-fi však není dnes, i přes ohromný pokrok naší civilizace, o mnoho bližší než před 200 roky. Do civilizace, jakou známe ze Star Wars máme ještě hodně daleko. Nevíme ani zda budou někdy mezihvězdné lety v této podobě realizovatelné. Co to je za nesmysl, říkáte si možná, vždyť přece několik kosmických sond letí ke hvězdám již nyní. Ano, letí, ale poletí ještě stovky tisíc až miliony let, dokud ve velké vzdálenosti neminou tu nejbližší a v té době navíc už s nimi dávno nebudeme mít žádný kontakt. Nás však budou zajímat mise realizovatelné v průběhu jediného lidského života, tedy zhruba v horizontu 100 roků. Pohovoříme dnes o tom, jaké možnosti ve splnění těchto odvážných cílů máme a jaké překážky, které nám klade fyzika musíme překonat. Dozvíme se i jaké vedlejší důsledky by cestování prostorem na velké vzdálenosti mělo.
V rámci programu Apollo měli astronauti k dispozici celou řadu nástrojů, které jim umožňovaly odebírat různé typy vzorků. V minulém díle jsme si představili část nástrojů, které umožňovaly odebírat vzorky z povrchu, ale to rozhodně nebylo vše. Ve výbavě nemohlo chybět známé geologické kladívko, ale byl tu i nástroj, který připomínal síťku na motýly. Na Apollu 16 navíc letěl také speciální nástroj pro odběr pouze těch nejsvrchnějších vrstev regolitu.
Odebrat vzorky na Měsíci není jen tak. Aby to měli astronauti z programu Apollo co možná nejjednodušší, dostali k dispozici různé nástroje pro odběr různých typů vzorků. Povrchové vzorky se tak odebíraly vším možným – od lopat přes lopatky a naběračky až po speciální hrábě. Jednotlivé nástroje se navíc průběžně měnily podle zkušeností z jejich praktického používání předešlými lunárními posádkami.
Na webu Kosmonautix.cz používáme soubory cookies k zajištění správného fungování našich stránek, ke shromažďování anonymních statistických dat a pro lepší uživatelský zážitek. Více informací najdete zde.
Děkujeme za registraci!
Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.
Děkujeme za registraci!
Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.