Texaská vesmírná komise
Texaská vesmírná komise udělila granty za více než 26 milionů dolarů pěti společnostem. Cílem je stimulovat vesmírný průmysl ve státě.
sociální sítě
Přímé přenosy
krátké zprávy
Texaská vesmírná komise udělila granty za více než 26 milionů dolarů pěti společnostem. Cílem je stimulovat vesmírný průmysl ve státě.
Společnost L3Harris Technologies oznámila rozšíření svého výrobního závodu ve Fort Wayne v Indianě za 125 milionů dolarů. Zaměřuje se na zvýšení výroby zařízení pro infračervené snímání – ústřední technologie pro štít protiraketové obrany Golden Dome.
Během veřejného zasedání Poradního panelu pro leteckou bezpečnost (ASAP) 17. dubna členové vyjádřili obavy o bezpečnosti stárnoucí Mezinárodní vesmírné stanice, přičemž uvedli dlouhodobé problémy a nedostatky ve financování.
Členové delegace texaského kongresu zaslali 16. dubna prezidentovi USA dopis, v němž žádali, aby přesunul sídlo NASA ze současného místa ve Washingtonu do Johnsonova vesmírného střediska v Houstonu. Nájemní smlouva na budovu současného ústředí NASA ve Washingtonu vyprší v roce 2028.
Spolupředsedové obou politických stran kongresového výboru kritizovali navrhované škrty ve vědeckých programech NASA, což znamená první republikánskou opozici v Kongresu. Spolupředsedové uvedli, že jsou znepokojeni zprávami, že návrh rozpočtu na fiskální rok 2026 sníží vědecký rozpočet NASA téměř na polovinu.
Ve zkušebním raketovém zařízení společnosti Northrop Grumman v Box Elder County došlo ve středu brzy ráno k explozi. Podle úřadu šerifa okresu Box Elder nebyl během incidentu nikdo zraněn. Příčina exploze se vyšetřuje.
Americké vesmírné síly mění způsob vyhodnocování rizik pro starty misí pomocí klasifikačních standardů pro zajišťování misí, které by mohly rozšířit příležitosti pro nové komerční poskytovatele.
Raketa na tuhé pohonné látky Minotaur IV vynesla misi NROL-174 se zpravodajskou družicí pro National Reconnaissance Office. Start rakety znamená návrat na základnu Vandenberg Space Force Base po více než deseti letech.
Start up Katalyst Space se spojil s evropským startupem LMO Space. Cílem spojení společností je demonstrace techniky pro připojování kosmických lodí, jinak známou jako asistované operace setkání a přiblížení (RPO).
Naše podcasty
Doporučujeme
Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.
Poděkování
Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!
Historie rakety Antares je hodně spletitá. Ještě v době, kdy se jmenovala Taurus II pro její první stupeň firma Orbital Sciences Corporation vybrala raketové motory AJ-26 od firmy Aerojet. Zajímavé bylo, že šlo o téměř tři desítky let staré motory NK-33 postavené ještě v Sovětském svazu. Jejich parametry vak byly velmi dobré a proto se měly po drobných úpravách používat na raketách, které dnes známe jako Antares.
Tahle nenápadná kostka o hraně 10 centimetrů vstoupí do historie jako doposud nejmenší radar vypuštěný do kosmického prostoru a hlavně jako první radar, který prostuduje vnitřní stavbu planetky. Konkrétně půjde o planetku Dimorphos, která byla koncem září letošního roku zasažena sondou DART, což vytvořilo více než 10 000 kilometrů dlouhý ohon úlomků za planetkou. Tento radar bude připojen ke čtveřici antén o délce 1,5 metru a vše bude součástí CubeSatu Juventas, jehož velikost agentura ESA přirovnává k příručnímu zavazadlu do letadla. CubeSat Juventas bude vypuštěn zhruba za dva roky na evropské sondě Hera.
Podnět k vzniku rakety, kterou dnes známe pod jménem Antares, dala NASA, když potřebovala zajistit zásobování Mezinárodní kosmické stanice ISS po vyřazení raketoplánů z aktivní služby. Tato raketa nebyla vybrána napoprvé, ale uspěla až ve druhém kole. To jako kdyby předznamenalo její další nelehký osud. V její historii najdeme například změny názvu nosiče i jeho provozovatelů, ale i změny konstrukce.
Kosmický průmysl je vcelku rychle rostoucí odvětví a v posledních letech můžeme vidět velmi výrazný trend prosazování a růstu startupů, tedy ne tak velikých soukromých firem, které většinou používají velmi inovativní a neobvyklá řešení a zkrátka na věci se dívají jinak. Jejich velikost jim umožňuje rychle a obratně reagovat na nově vzniklé situace, což jim dává oproti konkurenčním korporacím s tisíce zaměstnanci značnou výhodu. Celá firemní kultura tak zpravidla nebývá nějak extrémně byrokratická a hledají se výhodná originální řešení, která jsou schopna nabourat tradiční struktury produktů a trhu, což nutí ostatní stále inovovat. Díky tomu se kosmický průmysl, co se především z komerčního hlediska týče, stává čím dál více dostupný, a to prospívá celému kosmickému průmyslu, ale i ostatním odvětvím. Startupy si tak zakládají na progresivnosti a spolupráci, až už na svých vlastních projektech, nebo na projektech státních agentur. Abychom vám tento segment kosmického průmyslu přiblížili a ukázali vám zajímavé startupy, které se vyplatí sledovat, vznikl tento nepravidelný seriál, který si toto klade za cíl.
Poté, co začátkem listopadu letošního roku proběhne zkouška nafukovacího tepelného štítu LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator), použijí záchranné týmy navigaci s pomocí GPS, aby v okruhu kilometrů pátraly po jasně žlutém pouzdře o velikosti (a také tvaru) většího citrónu, které ukrývá cenná data. Tohle malé pouzdro je odhoditelný datový modul EDM, který byl vyvinut pro program LOFTID. Cílem celého projektu je v praxi otestovat technologii nafukovacího tepelného štítu, která by se teoreticky dala využít třeba pro přistání lidí na Marsu. Poté, co se štít po startu dostane do kosmického prostoru, nafoukne se a poté vstoupí do atmosféry, aby (pokud možno nepoškozený) dopadl do Tichého oceánu.
Všechny vzorky, které na Zemi dopravily mise Apollo (bylo jich skoro 3 000 a vážily necelých 400 kg), prošly přes středisko LRL (Lunar Receiving Laboratory). Tady proběhla jejich katalogizace a také zkoušky ověřující, zda nebyly kontaminovány, či zda nepředstavují pro pozemské prostředí riziko. Ve středisku LRL pobývali také astronauti prvních misí Apollo, kteří tu trávili svou karanténu.
Fascinující svět velmi nízkých teplot jsme si na našem webu představili již ve dvou článcích. Žádný ale nebyl primárně zaměřen na nesmírně zajímavý izotop helia, kterým je helium-4. To je sice hodno pozornosti i za normálních podmínek, avšak teprve při nízkých teplotách kolem 2,5 K se projeví ty nejvíce udivující vlastnosti, které z helia-4 činí jeden z nejpodivuhodnějších stavů hmoty na světě. S heliem-4 se navíc pojí jeden nevyřešený fyzikální problém, který zkoumala i posádka jednoho z letů amerických raketoplánů. Nejprve si však o heliu a jeho vlastnostech řekněme nějaké základní údaje.
Jelikož při prvních misích Apollo nikdo netušil, zda s sebou astronauti z Měsíce nevědomky nepřivezli nějakou skrytou hrozbu, musela být velká pozornost věnována způsobu, jak zacházet s astronauty po návratu z Měsíce. Výsledkem byl proces, který měl co nejvíce omezit kontakt nechráněné posádky a přivezeného nákladu s pozemským prostředím. Součástí prvních misí proto byla i karanténa, ve které posádky strávily několik dní. I tady ale platilo, že čím více jsme se o Měsíci v průběhu jednotlivých misí dozvídali, tím více se zprvu striktní pravidla uvolňovala.
Vážení čtenáři, dámy a pánové. V prosinci loňského roku odstartoval do kosmického prostoru na raketě Ariane 5 vesmírný dalekohled Jamese Webba, dlouho vyvíjený a toužebně očekávaný infračervený teleskop, vlajková loď astronomie tohoto desetiletí. Po úspěšném přeletu do okolí Lagrangeova bodu L2 soustavy Slunce – Země, rozložení dalekohledu a kalibraci přístrojů začala konečně vědecká pozorování. Jejich první výsledky jsme si zde již představili v článcích z 12., respektive 13. července. Velmi si vážíme toho, že Váš zájem o tento špičkový kus techniky a jeho objevy neustal. Z toho důvodu, a také kvůli tomu, že lze důvodně očekávat další významné objevy posunující o velký kus naše současné poznání, jsme se rozhodli přistoupit k seriálu, který bude v pravidelných intervalech pokrývat nejzajímavější vědecké dění kolem Webbova dalekohledu.
V dubnu jsme vydali článek, který se věnoval vývoji svinovacích fotovoltaických panelů. V podobném duchu se ponese i dnešní článek, ve kterém si posvítíme na jinou zajímavou technologii a její příběh. Marsovský kráter Jezero je plný nebezpečí – od kameny posetých svahů až po malé krátery. To z něj činí složité místo pro přistání. Přesto si sem v rámci mise Mars 2020 NASA dovolila poslat svůj rover Perseverance. Jeho přistání se nakonec navzdory složitým podmínkám podařilo a nezpochybnitelný podíl na tom měla i vylepšená navigační technologie. A právě té se budeme dnes věnovat.
Na webu Kosmonautix.cz používáme soubory cookies k zajištění správného fungování našich stránek, ke shromažďování anonymních statistických dat a pro lepší uživatelský zážitek. Více informací najdete zde.
Děkujeme za registraci!
Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.
Děkujeme za registraci!
Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.