sociální sítě

Přímé přenosy

krátké zprávy

Eutelsat

Společnost Eutelsat podepsala finanční balíček v hodnotě 975 milionů eur s francouzskou exportní úvěrovou agenturou, který má pomoci financovat 440 náhradních družic pro konstelaci širokopásmové sítě OneWeb na nízké oběžné dráze Země (LEO).

Space Systems

Společnost Space Systems oznámila smluvní dohodu se společností PickNik Robotics na podporu vývoje softwaru pro misi Fly Foundational Robotics (FFR) agentury NASA. FFR se zaměřuje na rozvoj schopností robotické manipulace na oběžné dráze.

The Exploration Company

Francouzsko-německá letecká společnost The Exploration Company dokončila simulované testy přistání na vodní hladině své lodi Nyx, modulární, opakovaně použitelné kosmické loďi určené k přepravě nákladu i posádky na nízkou oběžnou dráhu Země.

Orbex

Britská společnost Orbex, která se zabývá vyvojem nosných raket, oznámila, že podala návrh na nucenou správu poté, co selhalo několik pokusů o zachování financování společnosti.

SpaceX

Investoři a obchodníci ve vesmírném sektoru očekávají, že plánovaná primární veřejná nabídka akcií (IPO) společnosti SpaceX v letošním roce vyvolá nárůst kapitálu v celém odvětví, ale ne bez rizika, že v budoucnu odvede pozornost investorů od ostatních společností.

Německé letecké a kosmické centrum

Bavorský ministerský předseda Markus Söder 4. února oznámil, že Německé letecké a kosmické centrum (DLR) obdrží 58 milionů eur na vybudování Centra pro řízení lidského výzkumu, které bude podporovat budoucí robotické a lidské výzkumné mise. Celkové náklady na zařízení činí 78 milionů eur a kromě bavorského financování DLR investuje 20 milionů eur ze svého institucionálního rozpočtu.

ULA

Vedoucí pracovníci společnosti United Launch Alliance uvedli, že odchod dlouholetého generálního ředitele Toryho Bruna měl na společnost dopad. Podle nich to však nezměnilo schopnost společnosti ULA plnit její hlavní úkol: zvyšovat rychlost startů nové rakety Vulcan.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

NIAC – Sny o budoucnosti #15 Radioisotope Thermoradiative Cell Power Generator

Jak už bývá v tomto seriálu zvykem, dnes se opět podíváme na zoubek technologii, která je zatím v plenkách a nedá se u ní v blízké době čekat praktické uplatnění. Přesto však v sobě ukrývá potenciál a proto NASA podporuje její prvotní rozvoj. Ten už prošel první fází podpory a nyní je ve druhém kole. Jeho tvůrci chtějí pokračovat v započaté práci na vývoji a demonstraci proveditelnosti revolučního zdroje energie pro mise k vnějším planetám s využitím nového způsobu tepelné přeměny energie, termoradiativního článku (TRC – thermoradiative cell).

Technologie funguje v podstatě jako fotovoltaický článek, jen obráceně. TRC přeměňuje teplo z radioizotopového zdroje na infračervené záření, které je vysíláno do chladného vesmíru a při tomto procesu je vyráběna elektřina. V první fázi inženýři dokázali, že z 62,5 W peletky plutonia 238 je možné získat 8 W elektrického výkonu z univerzálního zdroje tepla pomocí TRC s pásem zakázaných energií 0,28 eV  při teplotě 600 K. Potřebná soustava zahrnuje 1 125 cm² článků TRC, což je něco přes 50 % plochy 6U CubeSatu. Při hmotnosti (zdroj tepla + TRC) 622 g je možné dosáhnout hmotnostního měrného výkonu 12,7 W/kg, což je více než 4,5násobné zlepšení oproti používaným radioizotopovým termoelektrickým generátorům (MMRTG). Na základě výsledků z první fáze se autoři domnívají, že zde existuje ještě mnohem větší potenciál, který lze odhalit.

Při použití materiálů III-V s nízkou propustností (jako je InAsSb) v nanostrukturovaných polích k omezení potenciálních ztrátových mechanismů lze podle prvních odhadů dosáhnout 25násobného zlepšení hmotnostního měrného výkonu a čtyřnásobného snížení objemu oproti MMRTG. V závislosti na provozních podmínkách je možné dosáhnout vyššího výkonu. Technologie TRC umožní rozšíření malých univerzálních sond s požadavky na výkon, které nesplňují fotovoltaická pole nebo objemné a neefektivní systémy MMRTG. To přímo umožní mise malých družic k vnějším planetám i činnosti v trvalém stínu, například v polárních měsíčních kráterech.

Studie ve druhé fázi prostuduje termodynamiku a realizovatelnost vývoje radioizotopového termoradiativního zdroje energie se zaměřením na velikost, hmotnost a výkon systému, přičemž bude pokračovat integrace účinků potenciálních mechanismů ztráty výkonu a účinnosti vyvinutých ve fázi I. Experimentálně budou pěstovány materiály a zařízení TRC, včetně supermřížek typu II na bázi InAsSb pomocí epitaxe z kovových anorganických par (MOVPE) s cílem zaměřit se na materiály s nízkým rozpětím s potlačenou Augerovou rekombinací. Budou testovány kontakty mezi kovem a polovodičem, které jsou schopny přežít požadované zvýšené teploty. Zařízení TRC budou testována na výkon při zvýšené teplotě v chladném prostředí ve vakuu v modifikovaném testovacím kryostatu vyvinutém v první fázi.

Na závěr proběhne analýza radioizotopového termoradiativního konvertoru pro napájení mise CubeSat k Uranu. Součástí bude inženýrská studie návrhu referenční mise s týmem inženýrů Compass v Glennově výzkumném středisku NASA s odbornými znalostmi o dopadu nových technologií na návrh sond v kontextu celkové mise, zahrnující všechny inženýrské obory a kombinující je na systémové úrovni. Nakonec má být vypracován technologický plán pro nezbytné součásti TRC, které mají pohánět budoucí misi.

Přeloženo z:
https://www.nasa.gov/

Zdroje obrázků:
https://www.nasa.gov/wp-content/uploads/2024/04/radioisotope-thermoradiative-cell-power-generator.jpg

Hodnocení:

5 / 5. Počet hlasů: 10

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
5 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
PetrB
PetrB
1 rok před

Z clanku vubec neni zrejme na jakem principu to funguje. Originalni clanek NASA to take nevysvetluje. Jiste vysvetleni se nabizi tady v tomto clanku, byt to neni presne tato technologie: https://www.cell.com/cell-reports-physical-science/pdf/S2666-3864(20)30280-0.pdf

Martin_V
Martin_V
1 rok před

Zajímavé, ale musím se přiznat, že jsem to úplně nepochopil (ani z originálu). Tady je to rozebrané podrobněji https://doi.org/10.1063/1.4907392 ale nejsem si jist, jestli je článek veřejně dostupný bez předplatného. Měl bych k tomu jednu malou terminologickou připomínku – bandgap se do češtiny překládá jako zakázaný pás, případně pás zakázaných energií, rozhodně ne jako pásmová mezera.

pave69
pave69
1 rok před

Bombózní, moc díky za takovéhle články – jde o technologii, která je průlomová! Podle mne je to dobře pochopitelné, i díky popisu z linků co poskytli diskutující. V podstatě u fotovoltaiky přicházející fotony vyráží elektrony na vyšší hladiny (až mimo atomy) a když se tyhle elektrony pošlou drátem, vzniká proud (atd.) Takže ozáření FV vlastně vyrábí mínus pól (elektron je záporný) oproti běžnému materiálu.
Oproti tomu TRC je vlivem přítomného plutonia hodně horké (což je asi jeden z hlavních problémů technologie, mít materiály, co to vydrží) a elektrony jsou excitované nad zakázaným pásem. Ale vyzařováním fotonů z tohoto materiálu se dostáváte pod zakázaný pás, čili vyzařováním fotonů (v podstatě ochlazováním) vyrábíte plus pól. Takže ta definice „funguje to jako FV, ale obráceně“, je přesná. 🙂

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Pro vytvoření hesla prosím klikněte na odkaz, který Vám právě dorazil do Vaší E-mailové schránky.