sociální sítě

Přímé přenosy

PSLV-XL (Proba-3)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

Teledyne Space Imaging

Společnosti Teledyne Space Imaging a Satlantis oznámily partnerství na Space Tech Expo Europe. Jedná se o vývoj elektroniky senzoru pro pozorování Země a planetární průzkum. Satlantis vyvine Front-end Electronics (FEE) pro vyvíjený detektor CIS125 TDI Teledyne.

Iceye

Společnost Lockheed Martin začala spolupracovat s konsorciem vedeným společností Iceye, finskou společností provádějící pozorování Země, která se specializuje na družice pro radarové zobrazování. Společnosti pracují na vývoji technologií rozpoznávání cílů s umělou inteligencí pro finskou armádu.

Chance Saltzman

Generál Chance Saltzman, velitel vesmírných operací U.S. Space Force, navštívil Starbase v Boca Chica během šestého zkušebního letu rakety SH/SS. Saltzman byl pozván SpaceX, aby sledoval zkušební let a zúčastnil se dvoudenního hodnocení programu.

Space ISAC

Středisko pro sdílení a analýzu vesmírných informací (Space ISAC) otevřelo své první mezinárodní operační středisko v Austrálii. Expanze přichází v době rostoucích obav o zranitelnosti kybernetické bezpečnosti v orbitálních systémech.

Boost!

ESA 19. listopadu oznámila, že prodlužuje smlouvy se společnostmi HyImpulse, Isar Aerospace, Orbex a Rocket Factory Augsburg (RFA) v celkové hodnotě 44,22 milionů eur prostřednictvím svého programu „Boost!“, který má pomoc při integrovaném testování nosných raket

AeroVironment

Společnost AeroVironment, dodavatel obrany zaměřený na bezpilotní vzdušná vozidla, oznámil 19. listopadu, že plánuje získat BlueHalo, společnost zabývající se obrannými a vesmírnými technologiemi. Hodnota obchodu je přibližně 4,1 miliardy dolarů.

Kepler Communications

Kanadský operátor Kepler Communications požádal Federální komunikační komisi, aby schválila celkem 18 družic, včetně 10 s optickým užitečným zatížením, které by měly být vypuštěny koncem příštího roku. Společnost plánuje provozovat větší družice s menším počtem.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Americký laser pro misi LISA

K tomu, abyste mohli detekovat největší kosmické kolize, potřebujete dost času, trpělivosti a spolehlivé lasery. V květnu proto NASA společně se zástupci průmyslových partnerů doručila Evropské kosmické agentuře první prototyp laseru pro mimořádnou misi LISA (Laser Interferometer Space Antenna). Tento unikátní přístroj je navržen k detekci droboučkého vlnění gravitačního pole, které způsobuje třeba splynutí neutronových hvězd, černých děr a supermasivních černých děr ve vesmíru. Vývoj laserového vysílače pro misi LISA vede Anthony Yu z Goddardova střediska v Greenbeltu, stát Maryland.

Vizualizace družic GRACE
Vizualizace družic GRACE
Zdroj: https://upload.wikimedia.org/

Vyvíjíme vysoce stabilní a robustní laser pro observatoř LISA,“ představuje práci svého týmu Yu a dodává: „Využili jsme zkušenosti, které jsme získali při minulých misích, ale i nejnovější technologie fotoniky a spolehlivosti technologií. Aby byly dosaženy náročné požadavky mise LISA, teď NASA vyvinula laserový vysílač využívající nízkoenergetický laser napojený na zesilovač z optických vláken.“ Experti vycházeli především ze zkušeností získaných při misi GRACE (Gravity Recovery and Climate Experiment). „Vyvinuli jsme kompaktnější verzi hlavního oscilátoru,“ popisuje Yu a dodává: „Je mnohem menší, lehčí a má i menší spotřebu energie, což umožní splnit požadavky na dlouhou životnost plně redundantního hlavního oscilátoru.

Aktuálně vytvořený prototyp je dvouwattový laser pracující v blízké infračervené části spektra. „Náš laser je zhruba 400× silnější než typické laserové ukazovátko, které má maximálně 5 miliwattů,“ porovnává Yu a pokračuje: „Velikost laserového modulu (pokud nepočítáme elektroniku) odpovídá objemu zhruba poloviny krabice od bot.“ Cenná zásilka nyní ze Spojených států dorazila do švýcarského města Neuchâtel, kde sídlí Švýcarské středisko elektroniky a mikrotechnologií CSEM. Právě zde by měly začít testy stability.

První prototyp laseru mise LISA doručený do švýcarského střediska CSEM k testům.
První prototyp laseru mise LISA doručený do švýcarského střediska CSEM k testům.
Zdroj: https://www.nasa.gov/

Mise LISA bude tvořena třemi družicemi, které poletí na oběžné dráze kolem Slunce za Zemí. Vůči sobě budou udržovat přesnou trojúhelníkovou formaci, ve které budou od sebe vzdálené 2,5 milionu kilometrů. Každá družice bude mířit dvěma lasery na zbylé dva exempláře. Laserový přijímač musí být schopen zachytit signál o intenzitě pouhých pár setin pikowattu, jelikož se paprsek laseru při cestě ke svému cíli rozšíří na průměr 20 kilometrů. Signál s časovým kódem integrovaným do paprsku umožní misi LISA měřit i ty nejdrobnější narušení během tohoto přenosu.

Jedna z trojice družic LISA
Jedna z trojice družic LISA
Zdroj: http://sci.esa.int/

Rozechvění struktury časoprostoru způsobené gravitačními vlnami způsobí detekovatelnou změnu vzdálenosti mezi družicemi. Měření těchto změn dá vědcům možnost určit, jak velká událost tyto vlny vyvolala a do které části vesmíru mají namířit své observatoře, aby pozorovali sekundární efekty této události. Výkyvy těchto gravitačních vln jsou tak droboučké, že je snadno překryjí vnější vlivy jako je tlak slunečního záření nebo nárazy prachových částic.K minimalizaci těchto vlivů byl v roce 2015 na misi LISA Pathfinder otestován koncept bezodporového řízení, který využívá volně poletující testovací blok uzavřený v útrobách družice jakožto referenční bod pro měření.

Kosmická mise LISA navazuje na výzkum pozemské observatoře LIGO (Laser Interferometer Gravitational-Wave Observatory) spadající pod National Science Foundation, která v roce 2015 zachytila první gravitační vlny. Od té doby se dvojici pozemských observatoří ve washingtonském Hanfordu a louisianském Livingstonu podařilo zachytit čtyři desítky splynutí. Thomas Hams, vědec pracující na misi LISA v ředitelství NASA ve  Washingtonu říká, že přesnost laserových měření umožní vědcům přiblížit stopy gravitačních vln po těchto splynutích a umožní dalším observatořím zaměřit se na správnou část oblohy, aby zachytily tyto události v elektromagnetickém spektru. Kupříkladu americká gamma observatoř Fermi zachytila první takovou víceúrovňovou zprávu jen pár sekund poté, co pozemská observatoř LIGO zachytila přes gravitační vlny spojení dvou neutronových hvězd. „U mise LISA čekáme, že budeme schopni tyto jevy zaznamenat ještě předtím, než dojde k samotnému splynutí,“ říká Hams a dodává: „Bude tu indikátor, který nám řekne, že se něco blíží.

Oběžná dráha družic LISA kolem Slunce.
Oběžná dráha družic LISA kolem Slunce.
Zdroj: https://upload.wikimedia.org

K dosažení požadované úrovně stability byly do týmu přizvány firmy Fibertek Inc. z Herndonu ve Virginii a Avo Photonics Inc. z města Horsham v Pennsylvánii, aby vyvinuly laser, oscilátor a zesilovač. Do týmu byl povolán také nezávislý optický inženýr z kalifornského San Jose. Firma Avo Photonics byla následně pověřena stavbou laseru pro observatoř. „Čelíte požadavkům na odolnost v kosmickém prostředí a požadavkům na toleranci optického vyrovnání na submikronové úrovni. To skutečně vyžaduje optické, tepelné a mechanické konstrukční schopnosti,“ přiznává Joseph L. Dallas, prezident Avo Photonics a dodává: „Navíc úzká šířka svazku, nízký šum a celková stabilita potřebná pro tuto misi jsou bezprecedentní.

Oběžná dráha obřího trojúhelníku kolem Slunce.
Oběžná dráha obřího trojúhelníku kolem Slunce.
Zdroj: http://www.sr.bham.ac.uk

Tom Kane vyvinul technologii monolitického laserového oscilátoru, který nyní Goddarovo středisko využívá ke stabilizaci frekvence světla laseru. „Obyčejný laser může být velmi nepřesný,“ říká Kane a dodává: „Mohou se od cílové frekvence velmi výrazně odchylovat. Potřebujete „klidný“ laser, který má přesně jednu frekvenci a vytváří dokonalý svazek s přesností na 15 desetinných míst.“ Jeho technologie oscilátoru využívá tzv. zpětnovazebné smyčky (feedback loops), které udržují laser na přesné úrovni. „Z vlnové délky se nakonec stává pravítko pro tyto nepředstavitelné vzdálenosti,“ přirovnává Kane.

Nízkošumový zesilovač s vysokým výkonem zase dodala firma Fibertek. Ta už má zkušenosti se spoluprací s agenturou NASA. Podílela se totiž třeba na misích ICESat 2 (Ice Cloud and Land Elevation Satellite) a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), jejíž laser pracuje už 15 let. Jak říká Anthony Yu z Goddardova střediska, pokud započítáme i pozemní testování a potenciální prodloužení mise, musí být lasery mise LISA schopny pracovat až 16 let, aniž by přeskočily hertz. „Jakmile dojde ke startu, budou muset pracovat 24/7 po dobu pětileté základní mise. Po té přichází v úvahu šesti- až sedmiletá nadstavbová mise,“ uzavírá Yu.

Přeloženo z:
https://www.nasa.gov/

Zdroje obrázků:
https://upload.wikimedia.org/wikipedia/commons/f/f5/LISA-waves.jpg
https://upload.wikimedia.org/wikipedia/commons/e/e6/GRACE_artist_concept.jpg
https://www.nasa.gov/sites/default/files/thumbnails/image/lisalaser.jpg
http://sci.esa.int/../67/LISA_mother_spacecraft_connected_by_lasers_1280.jpg
https://upload.wikimedia.org/wikipedia/commons/a/ad/LISA_motion.gif
http://www.sr.bham.ac.uk/yr4pasr/project06/GT/images/LISA%20orbit%202.jpg

Rubrika:

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
10 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře
Pajuc
Pajuc
3 let před

Doteď jsem si myslel, že LISA je čistě evropský projekt. Zrovna laser je ale stěžejní část detektoru gravitačních vln. Chápu to tedy správně, že ESA opět nijak zvlášť nepřispěla a vývoj obstarávají Američané?

Dušan Majer
Dušan Majer
3 let před
Odpověď  Pajuc

To se určitě říct nedá. Laser je určitě důležitý prvek celé mise, ale podobně důležitých systémů je tam celá řada a na těch už pracují evropští specialisté. LISA je evropský projekt, ale Američané mají o studium gravitačních vln dlouhodobě velký zájem.

Spytihněv
Spytihněv
3 let před
Odpověď  Pajuc

Pokud si dobře vzpomínám, tak LISA byla původně projekt NASA, poté se z úsporných důvodů trochu osekala a nazvala NGO (sondy neměly být rovnocenné, ale „hlavní“ by lasery mířila na zbylé dvě, ale tyto dvě na sebe navzájem už nikoliv). No a teď se toho tedy asi chopila ESA a opět máme tři rovnocenné sondy.

Vojta
Vojta
3 let před
Odpověď  Pajuc

Laser s požadovanými parametry sice není žádná hračka, ale dodat ho mohlo více subjektů. Za nejdůležitější považuji systémy odrušení vnějších vlivů a jejich integraci s detektory. A vůbec vymyslet to tak, aby to pracovalo s požadovanou přesností.
Primitivní formu tohoto systému si můžete postavit za pomoci lepších laserových ukazovátek a měřit tím třeba vibrace mostu. To, že si lasery nesmontujete na koleně ale objednáte si je za pár korun přes internet, Váš systém a Vaši práci na něm nijak neznehodnocuje.
Naopak rád vidím, že se do toho NASA opět zapojuje, když se na to před lety vykašlali. ESA to ušetří prostředky na jiné projekty.

Pajuc
Pajuc
3 let před
Odpověď  Vojta

Radovat se, že to převezme a zaplatí NASA, je hodně krátkozraké. Je v zájmu evropských zemí, aby zde probíhal špičkový výzkum a vývoj. Systémy, které vyzdvihujete, sice asi nebudou něco, co by dodala i Indie, ale byly již v roce 2015 otestovány na misi LISA Pathfinder, proto mi ten laser připadá jako větší výzva.

Libor Lukačovič
3 let před

Díky za článok!

Len nechápem výroku – „U mise LISA čekáme, že budeme schopni tyto jevy zaznamenat ještě předtím, než dojde k samotnému splynutí“. To akým spôsobom, resp. prístrojom?

Dušan Majer
Dušan Majer
3 let před

Už v době, kdy se k sobě obě tělesa blíží (respektive kolem sebe obíhají a přibližují se k sobě) a schyluje se ke kolizi, tak rozechvívají časoprostor a vytváří také gravitační vlny.

Dan
Dan
3 let před

Bude možné detekovat i GW o nižších frekvencích, než na pozemních interferometrech – což znamená, že tu spirálu smrti neutronových hvězd, nezadržitelně se blížících k finálnímu splynutí půjde detekovat dříve.

MilanV
MilanV
3 let před

Pozastavím se u takové základní věci jako jsou ty vzdálenosti a rozměry, protože mám zkušenost, že to pořád je pro drtivou většinu pozemšťanů naprosto neintuitivní – a proto je zajímavé se nad tím pozastavit:

Na obrázku a animaci vidíme trojúhelník z družic obíhající kolem Slunce. Vypadá to, že ty družice jsou „blízko sebe“ – relativně vzhledem k té oběžné dráze. A míří na sebe lasery, o kterých z běžné zkušenosti víme, že (krom jiných vlastností) se u kvalitních nerozbíhá světelný paprsek. A najednou čteme, že je potřeba extrémně citlivý přijímač na každé družici, protože ten superkvalitní laserový svazek na příjmu bude u ní mít průměr už 20 km, takže z něj přijímač bude muset lovit strašně malinkou část. Tak jak je to možné? A ono opravdu, ty vzdálenosti jsou tak obrovské – ta rozbíhavost laserového svazku, jestli správně počítám, je cca jedna tisícina stupně!

Jsou to opravdu neintuitivní vzdálenosti. A to ještě kdybychom spočítali podobnou úlohu pro Voyager…

Dušan Majer
Dušan Majer
3 let před
Odpověď  MilanV

Perfektní rozbor, díky moc!

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.