sociální sítě

Přímé přenosy

PSLV-XL (Proba-3)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

Dlouhý pochod 10

Čína provedla úspěšný test oddělení aerodynamického krytu užitečného zatížení pro raketu Dlouhý pochod 10. Test hodnotil design krytů, strukturu připojení, plán oddělení a maximální dostupnou obálku. Všechny testované parametry splňovaly jejich konstrukční požadavky.

LM 400

Společnost Lockheed Martin 19. listopadu oznámila, že její nová družicová platforma střední velikosti LM 400 bude mít svou orbitální premiéru příští rok na palubě rakety Firefly Aerospace.

Teledyne Space Imaging

Společnosti Teledyne Space Imaging a Satlantis oznámily partnerství na Space Tech Expo Europe. Jedná se o vývoj elektroniky senzoru pro pozorování Země a planetární průzkum. Satlantis vyvine Front-end Electronics (FEE) pro vyvíjený detektor CIS125 TDI Teledyne.

Iceye

Společnost Lockheed Martin začala spolupracovat s konsorciem vedeným společností Iceye, finskou společností provádějící pozorování Země, která se specializuje na družice pro radarové zobrazování. Společnosti pracují na vývoji technologií rozpoznávání cílů s umělou inteligencí pro finskou armádu.

Chance Saltzman

Generál Chance Saltzman, velitel vesmírných operací U.S. Space Force, navštívil Starbase v Boca Chica během šestého zkušebního letu rakety SH/SS. Saltzman byl pozván SpaceX, aby sledoval zkušební let a zúčastnil se dvoudenního hodnocení programu.

Space ISAC

Středisko pro sdílení a analýzu vesmírných informací (Space ISAC) otevřelo své první mezinárodní operační středisko v Austrálii. Expanze přichází v době rostoucích obav o zranitelnosti kybernetické bezpečnosti v orbitálních systémech.

Boost!

ESA 19. listopadu oznámila, že prodlužuje smlouvy se společnostmi HyImpulse, Isar Aerospace, Orbex a Rocket Factory Augsburg (RFA) v celkové hodnotě 44,22 milionů eur prostřednictvím svého programu „Boost!“, který má pomoc při integrovaném testování nosných raket

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Phoebus čekají namáhavé zkoušky

Vynášení nákladů do vesmíru není snadné. Vzornou ukázkou pokročilé kosmické techniky nejsou jen orbitální výpočty, nebo startovní rampy, ale i nádrže, které uchovávají pohonné látky. Agentura ESA již brzy začne testovat novou generaci nádrží raket. Některé rakety spalují kapalný kyslík a vodík, což jsou v mnoha ohledech skvělé pohonné látky, ale pro jejich kapalné skupenství je potřeba udržovat je při extrémně nízkých teplotách i pod – 200°C. Nádrže raket musí udržet tyto hluboce podchlazené kapaliny při nízkých teplotách a přitom musí vážit co nejméně.

Zvedání horního stupně rakety Ariane 5 na kapalný kyslík a vodík.
Zvedání horního stupně rakety Ariane 5 na kapalný kyslík a vodík.
Zdroj: https://www.esa.int/

Vodík má navíc hned několik nepříjemných vlastností, které komplikují práci s ním. Vytváří totiž nejmenší možné molekuly, které se velmi složitě udržují v uzavřeném prostoru. Vodíkové nádrže proto musí být mimořádně těsné. Vodík je navíc velmi lehký, takže i malé množství tohoto plynu vyžaduje ke svému uchování velký objem, což opět komplikuje snahy o jeho uložení při zachování nízké hmotnosti nádrží. Při skladování pohonných látek v kapalném skupenství jsou nádrže natlakovány, aby se pohonné látky dostaly do motoru při správném tlaku a teplotě. To znamená, že nádrže musí být nejen hermeticky těsné a izolující, ale také pevné.

Kapalný kyslík má také jednu vlastnost, která komplikuje jeho skladování. Jedná se o velmi reaktivní látku, která velmi rychle koroduje mnoho materiálů. Navrhování a stavba správných nádrží pro rakety tedy není vůbec nic jednoduchého a to jsme se vlastně ještě ani nedostali ke startu, kdy se vše ještě zkomplikuje.  Po zážehu motorů se raketa odlepí od rampy a každý její díl je vystaven intenzivním rázům, stlačování a chvění. Právě nádrže, ve kterých se mohou kapaliny převalovat, jsou vůči zmíněnému namáhání velmi náchylné.

Koncept horního stupně rakety vytvořený v rámci projektu Phoebus.
Koncept horního stupně rakety vytvořený v rámci projektu Phoebus.
Zdroj: https://www.esa.int/

Evropský projekt Phoebus si pro novou generaci nádrží raket vyhlédl uhlíkovými vlákny vyztužené plasty. Tyto materiály si v poslední době získávají stále větší oblibu, jelikož jsou extrémně lehké a přitom pevné. Až doposud však nebyly vhodné pro hermeticky těsné aplikace spojené se skladováním kapalného vodíku, případně kapalného kyslíku – tam byla pro změnu překážkou zmíněná reaktivita. Experti z agentury ESA, MT Aerospace a ArianeGroup nyní dokázali obě tyto překážky překonat použitím nových výrobních metod, ale i špičkovými návrhovými postupy a přesným laděním složení plastů.

Phoebus je demonstrátor nádrže z plastů vyztužených uhlíkovými vlákny, který byl vytvořen postupně po jednotlivých vrstvách. Tato technika spolu s inovativním designem umožnila inženýrům vytvořit jedinečný tvar, který zakomponoval nádrž do podpůrného rámce s izolační vzduchovou mezerou. Tím se podařilo jednou ranou vyřešit hned několik výše zmíněných problémů. Lehký, pevný, hermeticky těsný a nereaktivní klíčový prvek projektu Phoebus v říjnu prošel zhodnocením připravenosti ke zkouškám a dostal souhlas k zahájení testů. V jejich rámci bude model kyslíkové nádrže o průměru dvou metrů vystaven podmínkám, které by zažil při skutečném letu. Příští rok podstoupí tyto testy také podobně velká vodíková nádrž. V roce 2025 by pak měly začít testy plnorozměrového strukturálního demonstrátoru horního stupně.

Fyzika, chemie a konstrukční techniky za tímto projektem jsou neuvěřitelné,“ říká Kate Underhill, vedoucí inženýrka projektu z ESA a dodává: „Když jsme projekt Phoebus zahájili, bylo riziko vysoké a to, že projekt dospěl do této fáze, bylo možné jen díky obrovskému odhodlání a know-how zapojených týmů z ESA, MT Aerospace a ArianeGroup, které spolupracovaly jako jeden celek.“ Prvním krokem testů bude tlakování dusíkem a později přijde na řadu helium, přičemž tento plyn poslouží k odhalení případných netěsností v nádrží. Pokud Phoebus projde těmito základními zkouškami, bude na něj v další fázi čekat zkouška s kyslíkem.

Tým za projektem Phoebus.
Tým za projektem Phoebus.
Zdroj: https://www.esa.int/

Přesuneme Phoebus do vojenské testovací oblasti Rheinmetalu v německém Unterlüßu,“ říká Kate Underhill a dodává: „Můžeme tam testovat, protože tam jsou zvyklí na práci s výbušninami. A když pracujete s kapalným kyslíkem a něco se zvrtne, tak se to pak může pokazit hodně rychle.“ Závěrečný test bude pro nádrž nejnáročnější. Její konstrukce bude natahována a stlačována, aby se simulovala zátěž při startu rakety. K tomuto testu se využije zázemí MT Aeospace v německém Augsburgu. Při této zkoušce bude nádrž naplněna a natlakována kapalným dusíkem, aby se plně simulovaly podmínky při skutečném letu.

Přeloženo z:
https://www.esa.int/

Zdroje obrázků:
https://www.esa.int/…/25142067-1-eng-GB/Phoebus_testing.jpg
https://www.esa.int/…/Hoisting_of_cryogenic_upper_stage.jpg
https://www.esa.int/…/Phoebus_tank_structure_concept.png
https://www.esa.int/…/25148869-2-eng-GB/Phoebus_team.jpg

Rubrika:

Štítky:

Hodnocení:

0 / 5. Počet hlasů: 0

Sdílejte tento článek:

Další podobné články:

Komentáře:

Odběr komentářů
Upozornit
0 Komentáře
Nejstarší
Nejnovější Nejvíce hodnocený
Inline Feedbacks
Zobrazit všechny komentáře

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.