Projekt pojmenovaný Solar Surfing rozhodně není mise chystaná na start. Jedná se o základní předběžnou studii, kterou che NASA podpořit budoucí průzkumné mise, které by se mohly vydat mnohem blíže slunečnímu povrchu než kdy dříve. Kosmické agentury dnes mají k dispozici celou letku družic, jejichž jediným úkolem je sledování Slunce. Největší pozornosti se dostává sondě Parker Solar Probe, která po svém vypuštění v roce 2018 ustanovila rekord pro lidský objekt, který se nejvíc přiblížil ke Slunci. Heliofyzikové, kteří studují Slunce a jeho vliv na komplexní systém kosmického počasí, však nyní začínají nesměle pokukovat po takzvané přechodové oblasti. Tato velmi tenká vrstva láká vědce, ovšem nachází se velmi blízko povrchu Slunce. Parker Solar Probe se má při nejbližších průletech dostat ke Slunci na 6,4 milionu kilometrů. K tomu, aby bylo možné studovat přechodovou oblast, by se však hypotetická sonda musela dostat zhruba 8× blíže, tedy asi na vzdálenost 800 000 kilometrů!
Problémy, které s takovým výzkumem souvisí, jsou na první pohled zřejmé. Teplota v těchto oblastech začíná na zhruba 5 500°C u povrchu Slunce a s rostoucí vzdáleností teplota dramaticky stoupá až k milionu stupňů Celsia. Tento paradox mnoho lidí zmate – když se člověk vzdaluje od ohniště, pociťuje menší teplo, ale v těsné blízkosti Slunce jsou tyto procesy přesně opačné.
Program NIAC je zaměřen na podporu inovativních pokročilých konceptů a sídlí na Kennedyho středisku na Floridě. Specialisté se nyní v jeho rámci snaží posunout výzkum v oboru nových vysoce odrazivých povrchových vrstev. Ty by mohly najít využití na tepelném štítu sondy, která by se mohla ke Slunci přiblížit tak moc, že by zvládla prozkoumat tuto úžasnou oblast, která leží pouze 800 000 kilometrů od povrchu naší životodárné hvězdy. Vědci si od takové mise slibují lepší pochopení celého Slunce a procesů, kterými vytváří energii. Mohli bychom také lépe předvídat dopady sluneční aktivity na naši planetu, nebo zlepšit naši každodenní komunikaci, elektroniku a dopravní prostředky.
Přeloženo z:
https://www.nasa.gov/
Zdroje obrázků.
https://www.nasa.gov/…/thumbnails/image/solar_shield_poster_2000x3000_final.jpg
https://upload.wikimedia.org/wikipedia/commons/5/5d/Transition-region.jpg
Přenos tepla záleží na hustotě média. V oné kritické vzdálenosti 0,8 mil.km. od povrchu sice budou miliony stupňů, ale ve velice řídkém prostředí o mnoho se nelišícího od běžného vakua. Horší je, že Slunce bude všude. Nebude stačit štít zpředu, ale budou muset být chráněny i boky.
Štít stačí zpředu, ale tak velký, aby stínil i boky. Ty potom mohou sloužit k radiačnímu chlazení sondy nebo mohou nést přístroje popř. sekundární štít proti částicím korony.
Pokud se to povede, podobný štít by mohl umožnit těsné průlety sondám, které potřebují získat vysokou rychlost (využijí Oberthův manévr).
Nejsem odbornik, ale techniky jako iontove leptani se myslim pouzivaji i v technicke praxi….
Hadam ze jejich aplikace na vysoce odrazivy tepelny stit neprospeje jeho funkci 🙂
To plati jen u konvektivniho prenosu tepla – u radiacniho vubec ne.
Tuším že to bylo míněno tak, že v takové blízkosti slunce bude pohled na slunce zabírat téměř celý poloprostor, takže radiace bude ohřívat i z boků.
Zářivý výkon Slunce je 3,8.10^26 W. Sonda bude létat ve vzdálenosti 1,5.10^9 m, to je na povrchu koule 2,8.10^19 m2.
Mě z toho vychází, že na každý čtvereční metr sondy bude dopadat záření o výkonu 14 MW. Teda jestli jsem se někde nesekl. Asi proto ta potřebná odrazivost.