Štítek ‘Planck’

Co nám může sonda Planck prozradit o velikosti a tvaru vesmíru?

Sonda Planck

V loňském roce se kosmologie dostala i do prostředí sdělovacích prostředků a sociálních sítí. O odborných tématech souvisejících s naším vesmírem najednou debatovali i běžní lidé na internetu. A není divu, francouzsko-německá skupina kosmologů uveřejnila vědeckou studii, která se na základě analýzy dat ze sondy Planck snaží vyřešit záhady, které fyziky i veřejnost zajímají velmi dlouho. Jak velký je náš vesmír? A jaký má tvar? Pokud vás zmíněný výzkum minul, odpovědi jsou možná poněkud překvapivé. Jak jsou však dané výsledky relevantní? Je skutečně na místě jejich velmi odvážná interpretace, které se dopouštěla řada diskutujících v internetových diskuzích?

Historie kosmologie, reliktní záření a kosmický výzkum

Vznikem a vývojem vesmíru se zabývá celá řada teorií a hypotéz. Některé jsou pavědecké a pseudovědecké, jiné náboženské a mytologické. Přestože lze bezesporu mezi oběma skupinami najít zajímavé myšlenky, dnes se budeme zabývat pouze teoriemi vědeckými. Respektive pouze jednou z nich, teorií velké třesku, nejúspěšnější kosmologickou teorií všech dob. Její nejnovější verzi možná znáte jako standardní kosmologický model nebo též model ΛCDM. Cesta k věrohodné teorii vzniku a vývoje našeho vesmíru byla ale velmi dlouhá a náročná. Od doby antických filosofů a prvních moderních vědců, přes posměch kosmologům ze strany astronomů a fyziků z jiných oborů až po velké úspěchy v posledních dekádách. Vydejte se na podivuhodnou pouť za poznáním naší vlastní historie.

Výzkum mikrovlnného záření prošel revolucí

Některé věci si člověk uvědomí až zpětně. Když žijeme současností, málokdy si uvědomíme, jak velký posun udělala věda za poslední roky. Více než dobře je to vidět na měření odchylek mikrovlnného záření kosmického pozadí. To poprvé odhalili v roce 1965 američtí vědci Arno Allan Penzias a Robert Woodrow Wilson. Tomuto zajímavému fenoménu se v budoucnu věnovalo několik vědeckých týmů a pomohly i vědecké družice, mezi kterými ční americké satelity COBE a WMAP a evropská sonda Planck. V našem dnešním článku se podíváme na to, jak neuvěřitelným zpřesněním prošlo mikrovlnné záření kosmického pozadí, o kterém jsme před pár desítkami let ani netušili, že existuje.

ESA – 18. díl – Astronomický stroj času

1. uvodni obrazek

Nenechte se zmást, nemáme na mysli skutečný stroj času tak, jak jej známe z mnoha vědecko-fantastických filmů. Evropská kosmická agentura, respektive její představitelé a pracovníci takto ale skutečně nazývají mikrovlnný teleskop Planck, jemuž se v dnešním díle našeho seriálu budeme věnovat. Důvod, proč je tento teleskop nazýván strojem času, je prostý. Planck se zabýval monitorováním prastarého kosmického mikrovlnného pozadí, které je v astronomii spíše známo pod názvem reliktní záření. Je to první forma elektromagnetického záření, které ve vesmíru vzniklo a tak není pochyb o tom, že pohled na něj je skutečnou cestou do hlubin minulosti.

Gravitační čočkování může vyřešit záhadu rozporných měření sondy Planck

Velmi krátce po velkém třesku se existující časoprostor tvořený extrémně hustým a horkým plazmatem vzdouval a třepotal v rytmu kvantových fluktuací. Miliardy let poté daly tyto nepatrné zárodky nehomogenity vzniknout obřím galaktickým kupám čítajícím na stovky či tisíce galaxií, které jsou k sobě vázány mocnou silou té nejslabší ze všech sil – gravitací. Ale po loňských měřeních detektoru Planck přišlo řádné rozčarování. Výsledky měření se neshodovaly s teoretickou předpovědí založenou na prvotních kvantových fluktuacích. Vypadá to, že ve vesmíru chybí až 40 % galaktických kup, jež by tam podle teorie měly být. Někteří teoretičtí fyzici navrhovali pozměnit standardní model kosmologie, aby byly nesrovnalosti vysvětleny. Ale možná to nebude třeba – sladění obou veličin je možná už na dohled. A mohlo by se ukrývat v přesnějším měření hmotností galaktických klastrů.