sociální sítě

Přímé přenosy

Vega-C (Sentinel-1C)
00
DNY
:
00
HOD
:
00
MIN
:
00
SEK

krátké zprávy

BentoBox

Společnosti Atmos Space Cargo a Space Cargo Unlimited oznámily 3. prosince, že budou spolupracovat na sérii sedmi misí zařízení BentoBox, které ponese mikrogravitační náklad na oběžné dráze a poté jej vrátí na Zemi.

CZ-3B

Z kosmodromu Si-čchang odstartovala raketa CZ-3B ve verzi s vylepšeným prvním stupněm a pomocnými urychlovacími motory. Na oběžnou dráhu dopravila vojenskou družici TJS 13. Družice bude sloužit k telekomunikaci a také ke sběru zpravodajských informací.

CZ-12

Čína vypustila z kosmodromu Wen-čchang raketu CZ-12. Jednalo se o její premiérový start. Na nízkou oběžnou dráhu byly dopraveny testovací komunikační družice.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Štítek: fyzika

Gravitační vlny a kosmický výzkum

V únoru 2016 přišla z USA senzační novina, která brzy zaplnila vědecké weby a další sdělovací prostředky. Observatoř LIGO v září 2015 pozorovala gravitační vlny. Přesně po sto letech od předpovědi Alberta Einsteina tak byly gravitační vlny přímo pozorovány, přestože nešlo o první důkaz jejich existence. Americkým pozorováním se uzavřela jedna dlouhá kapitola fyzikálního výzkumu, a co víc, otevřelo se nám nové okno do vesmíru, které umožní prozkoumání mnoha zajímavých jevů. O tom všem si povíme. Nejprve si ale řekněme něco o základních fyzikálních silách a historii výzkumu gravitace.

Kosmické záření a kosmický výzkum

Kosmické záření, fenomén dráždící fyziky už svým nepřesným názvem, nepřestává překvapovat ani po více než sto letech od svého objevu. Může totiž dosahovat energií milionkrát vyšších než nejlepší urychlovače částic, které má lidstvo k dispozici. Zdroje těchto obřích energií jsou navíc dosud neznámé. K rozřešení záhady bylo vybudováno několik špičkových fyzikálních zařízení, například observatoř Pierra Augera v Argentině, na výzkumu se však významně podílí i řada kosmických observatoří a v poslední době se uvažuje o vypuštění dalších speciálních detektorů kosmického záření například na palubu Mezinárodní kosmické stanice.

Testy obecné relativity a kosmický výzkum

Už více než celé jedno století je platnou teorií gravitace obecná teorie relativity publikovaná Albertem Einsteinem v roce 1915. Od té doby obstála v mnoha experimentech, které si kladly za cíl její prověření, od prvních pokusů při zatměních Slunce v 10. letech minulého století až po moderní kosmologické a astrofyzikální experimenty vyžadující pokročilé technologie, z nichž mnohé úzce souvisejí s kosmickým výzkumem. Povíme si ale i něco o slavném experimentu považovaném za nejlevnější pokus moderní fyziky a o třech základních způsobech prověření Einsteinovy teorie. Nejprve si však musíme udělat stručnou exkurzi do samotné obecné relativity a říci si něco více o jejím původu a významu a o tom, co nám vlastně říká i co nám naopak neříká.

Nevyřešené problémy ve fyzice a kosmický výzkum

Fyzika je fascinující vědou, která nám za staletí své existence odhalila již mnoho záhad o světě kolem nás, od tajemství vesmíru až po složení hmoty. Snad ještě více otázek však zůstává nezodpovězeno, ačkoliv na nich mnohdy pracují největší mozky vědeckého světa. To by vás ale nemělo překvapit, často se říká, že jeden vyřešený problém ve vědě odhalí dalších deset problémů o nichž nevíme nic. Dnes se na některé z těchto velkých záhad společně podíváme, nejméně dvě totiž úzce souvisí i s kosmonautikou. Představíme si nicméně i další mimořádně zajímavé problémy, každý z nich v případě vyřešení znamenající Nobelovu cenu za fyziku a věčnou slávu.

Neutrina a kosmický výzkum

Neutrina mají zcela oprávněně pověst záhadných, těžko polapitelných a trochu zlobivých částic. Už jejich předpověď byla velmi zvláštní, nemluvě už vůbec o spoustě fascinujících vlastností, z nichž mnohé i dnes spíše tušíme, než přesně známe. Lze proto důvodně očekávat, že neutrina přispějí do studnice znalostí moderní fyziky ještě mnoha střípky. Vydejme se dnes spolu na podivuhodnou výpravu za poznáním jedné části minulosti, ale i současné fyziky, jakož i špičkových vědeckých pracovišť.

Boseho–Einsteinovy kondenzáty a kosmický výzkum

O supratekutém heliu, fascinujícím stavu látky jste zde již hovořili, a ještě se k němu nejméně jednou vrátíme. Existuje ale další, stejně zajímavá fáze hmoty také související s nízkými teplotami, kterou předpověděli dva přední fyzikové první poloviny minulého století. Občas se sice můžete dočíst, že po roce 1916 už Einstein nic důležitého nevymyslel, takový výklad by byl zcela mylný a rozhodně by opomíjel dvě klíčové práce z počátku 20. let 20. století, které spoluvytvořil s hrdinou indické vědy Šatendranáthem Bosem. Podle nich proto zmíněnou fázi hmoty nazýváme Boseho–Einsteinův kondenzát. Na jeho experimentální realizaci jsme si museli počkat více než 70 let, dnes už je ale Boseho–Einsteinův kondenzát natolik běžný, že se dostal až do sondážních raket či na Mezinárodní vesmírnou stanici. O tom ale až později, začít musíme před více než stoletím u lidí, jejichž klíčové teoretické práce celou oblast výzkumu podnítily.

Vesmírný dalekohled Jamese Webba a fyzikální výzkum

Dlouho očekávaný a mnohokrát odložený start vesmírného dalekohledu Jamese Webba se nyní plánuje na 18. prosince 2021. Jak všichni doufáme, jde snad o termín konečný a věříme, že vzlet na raketě Ariane 5 bude úspěšný. Astrofyzikové konečně dostanou do rukou nejpokročilejší vesmírnou observatoř, ne nadarmo označovanou za vlajkovou loď astronomie příštího desetiletí. Většinu článku, které jste o tomto pozoruhodném projektu četli na našem webu se týkala technických a konstrukčních aspektů, odkladů startu, testování či ekonomického pozadí, méně jste se však dočetli o neméně zajímavém aspektu – o tom vědeckém. Webbův teleskop, nástupce velmi úspěšného Hubbleova dalekohledu, by měl totiž změnit náš pohled na mnoho otázek kosmologie, astrofyziky i astronomie, proto si dnes představíme možnosti dalekohledu a oblasti výzkumu, jimž by se měl zejména věnovat.

Steven Weinberg (1933-2021)

V pátek 23. července dorazila z USA zpráva, která zarmoutila celý vědecký svět. Zemřel Steven Weinberg, jeden z nejvýznamnějších fyziků 20. století, spoluautor teorie elektroslabého sjednocení, jednoho z nejdůležitějších výsledků v dějinách fyziky. Proslul také jako průkopník nových metod v kvantové teorii pole i pokusů o kvantování gravitace, předpověď axionů, propagátor teorie velkého třesku, skvělý učitel a popularizátor vědy. Současně šlo o jednoho z posledních velikánů, kteří dokončovali standardní model částicové fyziky. Připomeňme si dnes tuto superstar světové vědy s brilantní myslí i originálními a mnohdy neotřelými názory trochu blíže.

Douglas D. Osheroff, nízké teploty a Columbia STS-107

Zkáza letu Challenger STS-51-L nebyla bohužel jedinou tragédií programu raketoplánů. Když se v únoru 2003 při přistání rozpadl raketoplán Columbia vracející se z mise STS-107, rozběhlo se důkladné vyšetřování. Podobně jako o 17 let dříve, i v tomto případě byl členem vyšetřovací komise fyzik a nositel Nobelovy ceny. Jmenoval se Douglas Osheroff. Na rozdíl od Richarda Feynmana, velmi dobře známého i lidem mimo fyzikální obec, Osheroff byl a stále je většině lidí prakticky absolutně neznámý. A to je škoda, neboť obohatil svůj obor i náš život o velmi zajímavé poznatky. Proto si dnes tohoto význačného muže podrobněji představíme.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.