Dnes se opět podíváme na projekt, jehož praktické uplatnění se nedá očekávat v blízké budoucnosti, ale přesto ukrývá určitý potenciál, který si zaslouží bližší prozkoumání. Právě proto jej NASA vybrala k hlubšímu rozpracování v rámci programu NIAC, který má za úkol finančně podporovat rozvoj technologií, které zatím nemají možnost realizace. Tímto dílem také zakončíme představení projektů, které byly v roce 2024 podpořeny v rámci Fáze 1. Ale žádný strach, náš seriál tím nekončí. Příští díl se bude věnovat prvnímu projektu, které byly letos podpořeny v rámci Fáze 2. Ale teď už k představení projektu s bezkonkurečně nejdelším názvem ze všech.
Průzkum Marsu získává v posledních dekádách zájem veřejnosti díky atraktivním robotickým misím a snímkům, které pořizují, což povzbuzuje naši kolektivní představivost. NASA aktivně plánuje pilotovanou výpravu k Marsu a definovala klíčové schopnosti, které musí být zvládnuté k provedení úspěšného a cenově dostupného programu, který by dostal lidské bytosti na povrch jiné planety a vrátil je také ve zdraví domů. Jednou z nezbytných oblastí, kde jsou nové mise pokročilé technologie potřebné, je dlouhodobé skladování kryogenních pohonných látek v různých kosmických prostředích. Mezi relevantní pohonné látky patří i kapalný vodík pro jaderný termální pohon NTP (Nuclear Thermal Propulsion) s vysokým specifickým impulsem, který může být aplikován na strategických místech, z čehož bude mise profitovat. Takové zásobníky kapalného vodíku by mohly posloužit k natankování pilotovaného planetoletu MTV (Mars Transfer Vehicle), který by astronauty bezpečně a dostupně posílal k Marsu a vracel zpět.
Předkladatelé projektu proto přišli s přelomovým konceptem mise – zásobníkem kryogenních kapalin pro ukládání kapalného vodíku s nulovým odparem v drsném a tepelně proměnlivém prostředí nízké oběžné dráhy Země. Inovativní návrh zásobníku využívá tenkých a lehkých pevných panelů připojených k povrchům zásobníku, které jsou otočené do hlubokého vesmíru. Ty mají využívat dlouho známou, ale zatím nerealizovanou metodu chlazení známou jako elektroluminiscenční chlazení ELC (Electro-Luminescent Cooling) k odvádění tepla z chladných pevných povrchů jako nerovnovážné tepelné záření s řádově vyšší hustotou výkonu, než jakou Planckův zákon připouští pro rovnovážné tepelné záření.
Takový zásobník by drasticky snížil cenu a komplexnost pohonných systémů pro pilotovanou výpravu k Marsu a dalšímu průzkumu hlubokého vesmíru. Umožnil by sondám doplnit pohonné látky po dosažení oběžné dráhy namísto toho, aby byly vypouštěny na mnohem větší raketě, která by vynesla sondu s potřebnými zásobami pohonných látek. K dosažení nulového odparu je nutné, aby teplota zásobníku zůstala pod teplotou varu kryogenních látek, což u kapalného vodíku činí cca 20 K. Dosažení takové teploty v termálních podmínkách jako na LEO vyžaduje jak excelentní odrazivost směrem ke Slunci, Zemi a dalším blízkým objektům, ale i energeticky účinné metody chlazení k odvodu malého množství tepla, které nevyhnutelné vnikne dovnitř. Oba tyto úkoly má plnit právě koncept ELC panelu. Realizace zásobníku kapalného vodíku s nulovým odparem na LEO umožní realizovat cenově výhodné a flexibilní pilotované výpravy k Marsu. Mise, kterou předkladatelé navrhli, bude rovněž demonstrovat schopnosti s vedlejšími přínosy pro kryogenní skladování v pozemních aplikacích a obecněji pro technologie chlazení v pevné fázi.
Přeloženo z:
https://www.nasa.gov/
Zdroje obrázků:
https://www.nasa.gov/wp-content/uploads/2024/01/2024-ph-i-pattabhi-raman-graphic.png
Zajímavé, nevěděl jsem o této (zatím spíš teoretické) technologii. V článku není moc vysvětlen princip, více jsem našel např. tady:
https://www.esa.int/gsp/ACT/projects/electroluminescent_cooling_using_LEDs/
V podstatě jde o LED diody, u kterých vyzářený foton odnáší i tepelnou energii (energii fononu v krystalové mřížce). Kámen úrazu je samozřejmě extrémně vysoká vyžadovaná účinnost LEDky, aby to víc chladilo než topilo 😉