sociální sítě

Přímé přenosy

krátké zprávy

Starship

NASA 28. března oznámila, že přidala vesmírnou loď Starship od společnosti SpaceX do své smlouvy NASA Launch Services (NLS) II. Smlouvu NLS II využívá agentura k získávání služeb startu pro mnoho vědeckých a průzkumných misí.

GITAI

Specialista na vesmírnou robotiku GITAI dokončil koncepční studii mechanického ramene, které by bylo připraveno podporovat japonský lunární rover s posádkou.

ESA

Evropa uzavřela smlouvu se společností Thales Alenia Space na vývoj digitálního dvojčete zemědělských systémů, které kombinují satelitní data a modelování plodin na podporu udržitelných a klimaticky odolných zemědělských postupů na celém kontinentu.

Booz Allen Hamilton

Technologická a konzultační firma Booz Allen Hamilton představila koncept mega-konstelace družic navržených tak, aby naplnily vizi vládní administrativy na komplexní protiraketový obranný štít na ochranu Spojených států, tzv. Golden Dome.

NG-22

V prohlášení z 26. března NASA uvedla, že modul Pressurized Cargo Module pro Cygnus, který měl letět s misí NG-22 k ISS, je poškozený a nebude použit pro tuto misi, která měla odstartovat v červnu.

Naše podcasty

Doporučujeme

Objednejte si knihy našich autorů a nahlédněte tak do historie kosmonautiky.

Poděkování

Náš web běží spolehlivě díky perfektnímu servisu hostingu Blueboard.cz, děkujeme!

Štítek: pulsar
Kresba milisekundového pulsaru

Fermi – zatmění gama záření

Pulsary jsou jedny z nejvíce fascinujících a nejpodivnějších objektů v kosmu. Není proto divu, že je astronomové a fyzikové velmi intenzivně studují. Jak už jsme si řekli v minulém článku, pulsary se vyskytují samostatně, ve dvojicích s hvězdami hlavní posloupnosti a dokonce najdeme v kosmu i dvojice, kde jsou buď obě složky pulsary nebo jeden pulsar a jedna neutronová hvězda. Všechny tyto systémy jsou něčím zajímavé, nás dnes ale bude zajímat nejvíce situace, kdy se pulsar nachází ve dvojici s hvězdou hlavní posloupnosti.

Fermiho gama observatoř

Pulsar Timing Arrays, gravitační vlny a Fermiho observatoř

Nedávno jsme si podrobně rozebrali neutronové hvězdy, jejich vznik, vlastnosti či specifika. Řekli jsme si též stručně jaké typy neutronových hvězd známe a čím jsou charakteristické. Dosti podrobně jsme pak rozebrali poměrně častý a pro astronomii i kosmonautiku významný druh neutronových hvězd – pulsary. Právě u pulsarů byly nalezeny první exoplanety, pomohly také potvrdit gravitační vlny, ale s jejich pomocí se dají též třeba navigovat kosmické lodě. My se dnes ale zaměříme na jinou zajímavou metodu, s jejíž pomocí můžeme zkoumat gravitační vlny a kterou mohou využít i některé kosmické sondy.

Umělecká představa magnetaru, který uvolňuje radiový záblesk.

Magnetary a kosmický výzkum

Nedávný článek jsme věnovali neutronovým hvězdám, především pak takzvaným pulsarům, které jsou samy o sobě velmi zajímavé, jelikož nabízí i několik možností praktického využití. Dnes se podíváme na možná ještě zajímavější objekty, kterými jsou magnetary. Jak už asi tušíte z názvu, jedná se o objekty s velmi silným magnetickým polem. Také magnetary jsou z pohledu fyziky mimořádně pozoruhodnými objekty. Nejprve si ale stručně zopakujme pár základních informací z minula.

Pulsary a kosmický výzkum

Jen málokdo dnes nezná neutronové hvězdy. Ještě před sto lety ovšem vědci ani netušili, že existují samotné neutrony, natožpak hvězdy z nich složené. První takové objekty našli astronomové až v 60. letech minulého století a rozpoutali tím hotovou tsunami. Od té doby probíhá nesmírně intenzivní výzkum neutronových hvězd a jejich jednotlivých typů. O těchto objektech jsme získali spoustu znalostí a zjistili jsme, že jsou ještě mnohem podivnější, než jsme se vůbec odvážili doufat. Dnes si některé z již dlouho známých informací, ale i nových objevů o neutronových hvězdách představíme více dopodrobna. Začít ale musíme u toho, jak fyzikové objevili částice zvané neutrony.

Vesmírná navigace pomocí pulsarů

I kapitáni vesmírných lodí potřebují navigátory a navigační systém. V posledních letech se intenzivně testuje možnost využití pulsarů pro účely vesmírné navigace. V minulém roce byly publikovány podrobnosti o testování této metody pomocí systému SEXTANT spolupracujícím s rentgenovým teleskopem na družici NICER. V nedávném článku jsem popisoval nejnovější výsledky přístroje NICER (Neutron star Interior Composition Explorer) pro studium rentgenového záření z vesmíru, který je umístěn na Mezinárodní vesmírné stanici ISS a je určen pro výzkum nitra neutronových hvězd právě pomoci rentgenového záření. Pozorováním nejtěžšího známého pulsaru PSR J0740+6620 se již podařilo nepřímo nahlédnout do nitra neutronové hvězdy a posoudit stlačitelnost jaderné hmoty v jejím centru. Součástí programu sondy je i projekt SEXTANT (Station Explorer for X-ray Timing and Navigation Technology) určený na testování vesmírné navigace s využitím pulsarů.

Ilustrace ukazuje rentgenový záblesk typu I. Dojde při něm k rozfouknutí vrstvy vodíku, následovanému ještě rychlejším rozptýlením vrstvy hélia. Pak dojde k ochlazení a poklesu hélia zpět. Část rentgenových paprsků proniká ven z akrečního disku.

Dalekohled NICER na ISS zaznamenal rekordní záblesk

Když byl na ISS dopraven přístroj NICER, vědci si od něj slibovali lepší prozkoumání neutronových hvězd, které se v některých případech chovají jako pulsary, a to když svými kužely rádiového záření zasahují Zemi. NICER pracuje v oboru měkkého rentgenového záření. Kromě detailního průzkumu neutronových hvězd si od výsledků jeho výzkumu slibujeme i možnost použít pulsary k přesné navigaci sond vyslaných do vzdálenějších míst Sluneční soustavy. Ty by tak mohly lépe určovat svou polohu i rychlost. NASA nyní oznámila, že tento dalekohled detekoval rekordní záblesk rentgenového záření.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.

Děkujeme za registraci! 

Prosím, klikněte na potvrzovací odkaz v mailu, který vám dorazil do vaší schránky pro aktivaci účtu.