Evropský vědecký JUICE: Anténa RIME v komoře Hertz

Minulý týden jsme Vám po několikaměsíčním čekání přinesli druhý díl seriálu Evropský vědecký JUICE, ve kterém se věnujeme postupnému vývoji jednotlivých dílů první vědecké sondy, která patří mezi velké evropské projekty. V článku jsme slibovali, že za pár dní přineseme další díl, jelikož Evropská kosmická agentura po dlouhé pauze vydala dva články krátce po sobě. Dnes přichází čas na slibovaný článek a konečně opustíme vakuové komory a tepelné zkoušky. Z prvních dvou dílů by totiž čtenář mohl snadno získat mylný dojem, že se jedná o jediný typ zkoušek před letem do vesmíru. A to by byla chyba. Přijměte proto pozvání do komory Hertz, která se nachází v technologickém středisku Evropské kosmické agentury v nizozemském ESTECu.

Zmenšený model sondy JUICE v komoře Hertz.

Zmenšený model sondy JUICE v komoře Hertz.
Zdroj: http://sci.esa.int

V září letošního roku byl do této komory umístěn zmenšený exemplář antény přístroje RIME, který na sondě JUICE poletí k Jupiteru. Samotný přístroj RIME je ve své technologické podstatě radar schopný studovat materiál uložený pod ledovým krunýřem. Jeho pracovní frekvence bude 9 MHz a měl by pomoci na dálku prověřit podpovrchové struktury velkých jupiterových měsíců. Radiové signály vysílané 16 metrů dlouhou dipólovou anténou proniknou ledem na povrchu měsíců až do hloubky devíti kilometrů, přičemž přístroj dokáže z jejich odrazů vyčíst údaje s vertikálním rozlišením mezi 50 a 140 metry.

Model sondy JUICE měl měřítko 1:18.

Model sondy JUICE měl měřítko 1:18.
Zdroj: http://sci.esa.int

Až bude sonda ve vesmíru, bude fungování tohoto přístroje ovlivňovat celá řada faktorů včetně vyzařovacího diagramu (radiation pattern) antény. Tento diagram budou ovlivňovat jednak značná velikost samotné sondy, dále pak orientace solárních panelů a také 10,6 metru dlouhé rameno MAG, na kterém budou senzory přístrojů J-MAG a RPWI (tomuto ramenu jsme se věnovali v minulém díle našeho seriálu).

Počáteční fáze sledování chování antény přístroje RIME bylo realizováno pomocí modelování a simulací, ovšem pro dokonalé ověření všech procesů je nezbytný fyzický model. Ke komplexním zkouškám vyzařovacího diagramu by byla zapotřebí celá sonda včetně solárních panelů, ale také šestnáctimetrová anténa. Tak rozměrné díly se však do komory pro měření elektromagentické kompatibility v ESTECu umístit nedají. Ke slovu proto přišel model zmenšený oproti originálu v měřítku 1:18. Ten obnášel jak samotnou anténu RIME, tak i zjednodušenou konstrukci těla sondy.

Model sondy disponoval i solárními panely - u nich byla možnost změnit úhel natočení.

Model sondy disponoval i solárními panely – u nich byla možnost změnit úhel natočení.
Zdroj: http://sci.esa.int

Použití zmenšeného modelu pro zkoušky přineslo výhodu nejen v tom, že testované konstrukce byly mnohem menší (třeba anténa RIME měřila pouze 80 centimetrů), ale stejně tak bylo možné zvýšit provozní frekvence na 162 MHz, což je frekvence, která se mnohem lépe hodí pro zkoušky v bezodrazových komorách.

Jak již bylo uvedeno v nadpisu článku, ke zkouškám posloužila komora Hertz, ve které se kombinují dva typy testovacích prostředí – Compensated Compact Range (CCR) and a Near Field Range (NFR). Druhý jmenovaný typ posloužil ke zkouškám společně s externím vysílačem, který produkoval signál, pro zachycení anténou. Samotná vysílací jednotka byla vyvinuta přímo v ESTECu speciálně pro tento účel. V komoře proběhlo hned několik zkoušek s různou orientací solárních panelů a nyní se budou získaná data porovnávat s údaji získanými během simulací. Tímto porovnáním se ověří, že vývoj probíhá správně a že je celý simulační proces dobře nastavený.

Zmenšená anténa přístroje RIME měřila jen 80 centimetrů, což umožnilo pracovat s vyšší frekvencí.

Zmenšená anténa přístroje RIME měřila jen 80 centimetrů, což umožnilo pracovat s vyšší frekvencí.
Zdroj: http://sci.esa.int

Během měření se model antény RIME otáčel ve dvou osách, aby bylo možné sledovat změny blízkých elektrických polí na sférickém povrchu v blízkosti modelu. Údaje o blízkých polích se použijí k odhadu chování vzdálených polí, což je hlavní oblast zájmu, jelikož je to blíže ke skutečnému chování reálné antény.

Celá testovací kampaň byla z velké části demonstrací technologického přístupu, díky které bude možné velmi přesně vyladit jednotlivé parametry. V dalších fázích bude chování antény simulováno na velmi přesných modelech, které budou vybaveny všemi faktory, které mohou ovlivňovat diagram antény. Tyto výsledky poslouží jako vstupní údaje pro tým vyvíjející přístroj RIME. Ti využijí tyto údaje k celkovým zkouškám chování přístroje a k jeho kalibraci ve vesmíru. Na závěr se ještě sluší poznamenat, že hlavním vývojářem zodpovědným za přístroj RIME je Università degli Studi z italského Trenta.

Zdroje informací:
http://sci.esa.int/

Zdroje obrázků:
http://sci.esa.int/…/JUICE_RIME_antenna_in_HERTZ_facility_Sep2018_7.jpg
http://sci.esa.int/…/JUICE_RIME_antenna_in_HERTZ_facility_Sep2018_1.jpg
http://sci.esa.int/…/JUICE_RIME_antenna_in_HERTZ_facility_Sep2018_5.jpg
http://sci.esa.int/…/JUICE_RIME_antenna_in_HERTZ_facility_Sep2018_2.jpg
http://sci.esa.int/…/JUICE_RIME_antenna_in_HERTZ_facility_Sep2018_6.jpg

Print Friendly, PDF & Email

Kontaktujte autora: hlášení chyb, nepřesností, připomínky
Prosím čekejte...
Níže můžete zanechat svůj komentář.

14 komentářů ke článku “Evropský vědecký JUICE: Anténa RIME v komoře Hertz”

  1. Dan napsal:

    Podle úvodní fotky jsem čekal, že budou testovat akustickou odolnost 🙂 Tam by byl zvuk 🙂 A ono je to na elmag.

  2. Víťa napsal:

    Trochu jsem si připomněl „staré amatérské doby“. Nejde mi dohromady délka antény 14,4m/9MHz, nebo pak v měřítku 1:18 80cm/156Mhz. Poloviční rozměr antény mi vychází na 95,8cm/156MHz. Počítám špatně, něco jsem přehlédl? Lambda=C/f
    Lambda=m vlnová délka, ideální délka antény
    C=rychlost světla v m/s
    f=Hz

    Jinak moc díky za pohled pod pokličku do těchto testů. Hlavně to zmenšení mě zaujalo + odpovídající změna frekvence.

  3. tycka napsal:

    Tak si nejsem již tak jistý – na speciální radar možná ano jen 9 Mhz- je to opravdu zajímavé – můj omyl byl kvůli mým zkušenostem s šířením krátkých vln v ionosféře Země.
    https://cs.wikipedia.org/wiki/Kr%C3%A1tk%C3%A9_vlny

  4. tycka napsal:

    „9 MHz“
    Opravdu – jen 9 MHz – neměli by být spíše 9 GHZ.
    9 Mhz jsou krátké vlny a ty jsou na radary pokud vím nepoužitelné.

Napište komentář k Víťa

Chcete-li přidat komentář, musíte se přihlásit.